FORMAL SOLUTIONS OF INVERSE SCATTERING PROBLEMS .3.

被引:61
作者
PROSSER, RT
机构
[1] Department of Mathematics, Dartmouth College, Hanover
关键词
D O I
10.1063/1.524379
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The formal solutions of certain three-dimensional inverse scattering problems presented in papers I and II of this series [J. Math. Phys. 10, 1819 (1969); 17 1175 (1976)] are obtained here as fixed points of a certain nonlinear mapping acting on a suitable Banach space of integral kernels. When the scattering data are sufficiently restricted, this mapping is shown to be a contraction, thereby establishing the existence, uniqueness, and continuous dependence on the data of these formal solutions. © 1980 American Institute of Physics.
引用
收藏
页码:2648 / 2653
页数:6
相关论文
共 11 条
  • [1] Banach, 1922, FUND MATH, V3, P133, DOI [DOI 10.4064/FM-3-1-133-181, 10.4064/fm-3-1-133-181]
  • [2] FADDEEV LD, 1963, MATH ASPECTS 3 BODY, V69
  • [3] Friedrichs K., 1965, PERTURBATIONS SPECTR
  • [4] JOST R, 1952, PHYS REV, V87, P979
  • [5] Kantorovich LV., 1948, USP MAT NAUK, V3, P89
  • [6] KUPRADSE WD, 1956, RANDWERTAUFGABEN SCH
  • [7] CALCULATION OF THE SCATTERING POTENTIAL FROM REFLECTION COEFFICIENTS
    MOSES, HE
    [J]. PHYSICAL REVIEW, 1956, 102 (02): : 559 - 567
  • [8] Newton R.G., 1966, SCATTERING THEORY WA
  • [9] FORMAL SOLUTIONS OF INVERSE SCATTERING PROBLEMS
    PROSSER, RT
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (10) : 1819 - &
  • [10] PROSSER RT, 1976, J MATH PHYS, V17, P1775, DOI 10.1063/1.522819