THE ACCURACY OF JUMP FREQUENCIES IN SERIES SOLUTIONS OF THE RESPONSE OF A DUFFING OSCILLATOR

被引:31
作者
FRISWELL, MI
PENNY, JET
机构
关键词
D O I
10.1006/jsvi.1994.1018
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
引用
收藏
页码:261 / 269
页数:9
相关论文
共 13 条
[1]  
BENHAFSI Y, 1990, 15TH P INT SEM MOD A, P1175
[2]  
Benhafsi Y., 1992, INT J ANAL EXPT MODA, V7, P179
[3]  
Cheung Y. K., 1988, ENG COMPUT, V5, P134
[4]   ON THE EQUIVALENCE OF THE INCREMENTAL HARMONIC-BALANCE METHOD AND THE HARMONIC BALANCE-NEWTON RAPHSON METHOD [J].
FERRI, AA .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1986, 53 (02) :455-457
[5]  
LUNG AYT, 1992, DYNAMICS STABILITY S, V7, P43
[6]  
Stoker J.J., 1950, NONLINEAR VIBRATIONS, V2
[7]   HIGHER APPROXIMATION OF STEADY OSCILLATIONS IN NON-LINEAR SYSTEMS WITH SINGLE DEGREE OF FREEDOM (SUGGESTED MULTI-HARMONIC BALANCE METHOD) [J].
TAMURA, H ;
TSUDA, Y ;
SUEOKA, A .
BULLETIN OF THE JSME-JAPAN SOCIETY OF MECHANICAL ENGINEERS, 1981, 24 (195) :1616-1625
[8]  
TAMURA H, 1986, B JSME, V29, P894, DOI 10.1299/jsme1958.29.894
[9]  
TSUDA Y, 1984, B JSME, V27, P1280, DOI 10.1299/jsme1958.27.1280
[10]  
Ueda Y., 1991, Chaos, Solitons and Fractals, V1, P199, DOI 10.1016/0960-0779(91)90032-5