DIFFUSION IN DISORDERED MEDIA

被引:5
作者
BENAVRAHAM, D [1 ]
机构
[1] CLARKSON UNIV,DEPT PHYS,POTSDAM,NY 13676
关键词
D O I
10.1016/0169-7439(91)80040-W
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Diffusion in disordered media is anomalous in that it does not follow the regular Fickian law of diffusion in homogeneous systems. This has important implications for the physics of transport phenomena in disordered media. Fractals and scaling theory have been particularly illuminating in this area of research. An elementary exposition of anomalous diffusion in disordered media and its physical consequences, based on the concept of fractals, are presented.
引用
收藏
页码:117 / 122
页数:6
相关论文
共 10 条
[1]  
ALEXANDER S, 1982, J PHYS LETT-PARIS, V43, pL625, DOI 10.1051/jphyslet:019820043017062500
[2]  
FAMILY F, IN PRESS CHEMOMETRIC
[3]   DIFFUSION IN REGULAR AND DISORDERED LATTICES [J].
HAUS, JW ;
KEHR, KW .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1987, 150 (5-6) :263-406
[4]   DIFFUSION IN DISORDERED MEDIA [J].
HAVLIN, S ;
BENAVRAHAM, D .
ADVANCES IN PHYSICS, 1987, 36 (06) :695-798
[5]   LOW DIMENSIONAL REACTION-KINETICS AND SELF-ORGANIZATION [J].
KOPELMAN, R ;
ANACKER, LW ;
CLEMENT, E ;
LI, L ;
SANDER, L .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1991, 10 (1-2) :127-132
[6]  
Mandelbrot B. B., 1982, FRACTAL GEOMETRY NAT, P1
[7]  
Mandelbrot B. B., 1977, FRACTALS FORM CHANCE
[8]  
Pietronero L., 1986, FRACTALS PHYS
[9]  
RAMMAL R, 1983, J PHYS LETT-PARIS, V44, pL13, DOI 10.1051/jphyslet:0198300440101300
[10]  
WEISS GH, 1983, ADV CHEM PHYS, V52, P363