HITTING PROBABILITIES OF RANDOM-WALKS ON ZD

被引:64
作者
KESTEN, H
机构
关键词
D O I
10.1016/0304-4149(87)90196-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:165 / 184
页数:20
相关论文
共 11 条
[1]  
Ahlfors LV., 2010, CONFORMAL INVARIANTS
[2]  
Feller W., 2008, INTRO PROBABILITY TH
[3]   ANOTHER NOTE ON BOREL-CANTELLI LEMMA AND STRONG LAW, WITH POISSON APPROXIMATION AS A BY-PRODUCT [J].
FREEDMAN, D .
ANNALS OF PROBABILITY, 1973, 1 (06) :910-925
[4]  
Hille E., 1962, ANAL FUNCTION THEORY, VII
[5]  
ITO K, 1960, ILLIN J MATH, V4, P119
[6]   HOW LONG ARE THE ARMS IN DLA [J].
KESTEN, H .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (01) :L29-L33
[7]  
Meakin P., 1986, On Growth and Form - Fractal and Non-Fractal Patterns in Physics. Proceedings of the NATO Advanced Study Institute, P111
[8]  
Spitzer F., 1976, PRINCIPLES RANDOM WA
[9]  
Stanley H. E., 1986, GROWTH FORM
[10]  
STOHR A, 1949, MATH NACHR, V3, P330