NON-CENTRAL LIMIT-THEOREMS FOR NONLINEAR FUNCTIONALS OF GAUSSIAN FIELDS

被引:382
作者
DOBRUSHIN, RL [1 ]
MAJOR, P [1 ]
机构
[1] HUNGARIAN ACAD SCI,INST MATH,H-1053 BUDAPEST,HUNGARY
来源
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE | 1979年 / 50卷 / 01期
关键词
D O I
10.1007/BF00535673
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let a stationary Gaussian sequence Xn, n=... -1,0,1, ... and a real function H(x) be given. We define the sequences {Mathematical expression}, n=... -1,0,1...; N=1,2, ... where ANare appropriate norming constants. We are interested in the limit behaviour as N→∞. The case when the correlation function r(n)=EX0Xn tends slowly to 0 is investigated. In this situation the norming constants A> N tend to infinity more rapidly than the usual norming sequence A> N=√N. Also the limit may be a non-Gaussian process. The results are generalized to the case when the parameter-set is multi-dimensional. © 1979 Springer-Verlag.
引用
收藏
页码:27 / 52
页数:26
相关论文
共 9 条