DISTANCES IN COCOMPARABILITY GRAPHS AND THEIR POWERS

被引:20
作者
DAMASCHKE, P
机构
[1] Mathematische Fakultät, Friedrich-Schiller-Universität Jena, 6900 Jena, Universitätshochhaus, 17. OG, O
关键词
D O I
10.1016/0166-218X(92)90296-M
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let ccp denote the class of cocomparability graphs. We characterize ccp by a distance inequality. As a consequence we show: If G is-an-element-of ccp, then the kth power G(k) also belongs to ccp, for any k greater-than-or-equal-to 1. As a further result we get that such graphs G(k) (G is-an-element-of ccp, k greater-than-or-equal-to 2) have no induced subgraphs isomorphic to K1,4 or K2,3.
引用
收藏
页码:67 / 72
页数:6
相关论文
共 11 条
[1]  
Berge C, 1985, GRAPHS
[2]   THE K-DOMINATION AND K-STABILITY PROBLEMS ON SUN-FREE CHORDAL GRAPHS [J].
CHANG, GJ ;
NEMHAUSER, GL .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1984, 5 (03) :332-345
[3]  
DAHLHAUS E, 1987, ARS COMBIN B, V24, P23
[4]  
Damaschke P., 1990, TOPICS COMBINATORICS, P219
[5]  
DUCHET P, 1979, THESIS U PARIS 6
[6]  
Duchet P., 1984, ANN DISCRETE MATH, V88, P67
[7]   ON POWERS AND CENTERS OF CHORDAL GRAPHS [J].
LASKAR, R ;
SHIER, D .
DISCRETE APPLIED MATHEMATICS, 1983, 6 (02) :139-147
[8]  
Lubiw A., 1982, THESIS U WATERLOO
[9]  
Mohring R. H., 1987, COMPUTATIONALLY TRAC
[10]  
Raychaudhuri A, 1987, C NUMER, V59, P235