RATIONAL APPROXIMATION TO FORMAL POWER-SERIES

被引:38
作者
BREZINSKI, C
机构
[1] U.E.R. I.E.E.A. - Informatique, Université des Sciences et Techniques de Lille, 59650 Villeneuve d'Ascq
关键词
D O I
10.1016/0021-9045(79)90019-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A general method for obtaining rational approximations to formal power series is defined and studied. This method is based on approximate quadrature formulas. Newton-Cotes and Gauss quadrature methods are used. It is shown that Padé approximants and the ε{lunate}-algorithm are related to Gaussian formulas while linear summation processes are related to Newton-Cotes formulas. An example is exhibited which shows that Padé approximation is not always optimal. An application to e-t is studied and a method for Laplace transform inversion is proposed. © 1979.
引用
收藏
页码:295 / 317
页数:23
相关论文
共 19 条
[1]  
ALT R, 1972, RECHERCHE OPERATIO R, V3, P99
[2]  
[Anonymous], 1974, ROCKY MOUNTAIN J MAT
[3]  
BREZINSKI C, 1977, CR ACAD SCI A MATH, V284, P1041
[4]  
BREZINSKI C, 1970, RIRO R, V3, P147
[5]  
BREZINSKI C, 1977, PADE RATIONAL APPROX, P3
[6]  
CROUZEIX M, 1977, RAIRO-ANAL NUMER-NUM, V11, P241
[7]  
Ehle B. L., 1969, THESIS U WATERLOO
[8]   OPTIMAL APPROXIMATION IN HILBERT SPACES WITH REPRODUCING KERNEL FUNCTIONS [J].
LARKIN, FM .
MATHEMATICS OF COMPUTATION, 1970, 24 (112) :911-&
[9]  
LARKIN FM, 1977, PADE RATIONAL APPROX, P275
[10]  
LONGMAN IM, 1966, B SEISMOL SOC AM, V56, P1045