CENTER-MANIFOLD THEORY FOR LOW-FREQUENCY EXCITATIONS IN MAGNETIZED PLASMAS

被引:2
作者
BEYER, P
GRAUER, R
SPATSCHEK, KH
机构
[1] Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf
来源
PHYSICAL REVIEW E | 1993年 / 48卷 / 06期
关键词
D O I
10.1103/PhysRevE.48.4665
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
For the dissipative trapped-ion mode, a simple one-dimensional nonlinear model equation, including the effects of instability, dissipation, and dispersion, is investigated. The center-manifold theory is applied to the situation of more than one marginally stable mode, and the dynamics in the neighborhood of the onset of instability is elucidated. Depending on the (three) relevant parameters, stable solitary waves, mixed modes, heteroclinic orbits, etc., can exist; a scenario for the nonlinear dynamical behavior is developed. The bifurcation diagrams are drawn with quantitative predictions in parameter space. An important conclusion is that the codimension-two analysis utilized can predict successive bifurcations which cannot be captured by simple analysis of one unstable mode. The analytical calculations are checked by numerical simulations.
引用
收藏
页码:4665 / 4673
页数:9
相关论文
共 30 条
[1]   CHAOS AND COHERENT STRUCTURES IN PARTIAL-DIFFERENTIAL EQUATIONS [J].
ACEVES, A ;
ADACHIHARA, H ;
JONES, C ;
LERMAN, JC ;
MCLAUGHLIN, DW ;
MOLONEY, JV ;
NEWELL, AC .
PHYSICA D, 1986, 18 (1-3) :85-112
[2]  
Andronov A.A., 1966, THEORY OSCILLATORS
[3]   HETEROCLINIC CYCLES AND MODULATED TRAVELING WAVES IN SYSTEMS WITH O(2) SYMMETRY [J].
ARMBRUSTER, D ;
GUCKENHEIMER, J ;
HOLMES, P .
PHYSICA D, 1988, 29 (03) :257-282
[4]  
Arnold VI., 1983, GEOMETRICAL METHODS
[5]  
Carr J., 1981, APPL CTR MANIFOLD TH
[6]   NONLINEAR SATURATION OF DISSIPATIVE TRAPPED-ION MODE BY MODE-COUPLING [J].
COHEN, BI ;
KROMMES, JA ;
TANG, WM ;
ROSENBLUTH, MN .
NUCLEAR FUSION, 1976, 16 (06) :971-992
[7]  
Eickermann T., 1990, INVERSE METHODS ACTI, P511
[8]   TRAPPED ION INSTABILITY IN PLASMAS WITH MAGNETIC SHEAR [J].
GLADD, NT ;
ROSS, DW .
PHYSICS OF FLUIDS, 1973, 16 (10) :1706-1718
[9]   NONLINEAR-INTERACTIONS OF TEARING MODES IN THE VICINITY OF A BIFURCATION POINT OF CODIMENSION 2 [J].
GRAUER, R .
PHYSICA D, 1989, 35 (1-2) :107-126
[10]  
Guckenheimer J., 2013, APPL MATH SCI, DOI 10.1007/978-1-4612- 1140-2