NUMERICAL-SOLUTION OF BOUNDARY INTEGRAL-EQUATIONS IN TIME-HARMONIC ELECTROMAGNETIC SCATTERING

被引:17
作者
KRESS, R
机构
[1] Universitat Gottingen, Gottingen
关键词
D O I
10.1080/02726349008908226
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We study the numerical solution of the boundary integral equation formulation for the scattering of time-harmonic electromagnetic waves from infinite cylinders. For smooth boundaries of the cylinder cross section we describe a Nystroöm, a collocation and a Galerkin method based on an approximation by trigonometric polynomials on an equidistant mesh. For smooth data in each of the three methods the convergence is exponential. From the three approaches the Nystroöm method is the most efficient since it requires the least computational effort. For cross sections with corners we develop a Nystroöm method on a graded mesh based on the idea of transforming the nonsmooth case to a smooth periodic case via an appropriate substitution. We conclude the paper with some considerations on the corresponding three dimensional problem. © 1990 Taylor & Francis Group, LLC.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 21 条
[1]  
Colton D., Kress R., Integral Equation Methods in jcatten'nj theory, (1983)
[2]  
Kress R., Q. Jl. Mech. Appl. Math, 38, pp. 323-341, (1985)
[3]  
Kress R., Linear Integral Equations, (1989)
[4]  
Hackbusch W., Multi-Grid Methods and Applications, (1985)
[5]  
Martensen E., Acta Math, 109, pp. 75-135, (1963)
[6]  
Kussmaul R., Ein numerisches Verfahren zur Losung des Neumannschen Aussenraumproblems fiir die Helmholtzsche Schwingungsgleichung, Computing, 4, pp. 246-273, (1969)
[7]  
Kress R., 16, pp. 389-396, (1971)
[8]  
Nystrom E.J., 54, pp. 185-204, (1930)
[9]  
Schuster G.T., Smith L.S., A comparison among four direct boundary integral methods, J. Acoustic Soc. Am, 77, pp. 850-864, (1985)
[10]  
Ainini S., Chen K., Iterative techniques for boundary element methods - Application to the exterior acoustic problem, Boundary Elements X, Vol 4- Geomechanics, Wave Propagation and Vibrations, pp. 317-331, (1988)