REDUCTION OF THE RATIONAL SPIN SL(2,C) WZNW CONFORMAL THEORY

被引:33
作者
FURLAN, P
GANCHEV, AC
PAUNOV, RR
PETKOVA, VB
机构
[1] SCUOLA INT SUPER STUDI AVANZATI,I-34014 TRIESTE,ITALY
[2] IST NAZL FIS NUCL,TRIESTE,ITALY
[3] CERN,DIV THEORY,CH-1211 GENEVA 23,SWITZERLAND
[4] UNIV KARLSRUHE,TH,INST THEORET PHYS,W-7500 KARLSRUHE,GERMANY
[5] INST NUCL ENERGY RES,BU-1784 SOFIA,BULGARIA
关键词
D O I
10.1016/0370-2693(91)90525-U
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We construct explicitly the correlation functions on the plane of the rational spin and level A1(1) WZNW conformal model. The corresponding Virasoro minimal correlations are recovered in the limit when the isospin sl(2, C) variables x(i) approach the coordinates z(i). The Knizhnik-Zamolodchikov equation reduces to a differential equation for the minimal conformal blocks, reflecting the decoupling of the Virasoro null vectors.
引用
收藏
页码:63 / 70
页数:8
相关论文
共 28 条
[2]   TODA THEORY AND W-ALGEBRA FROM A GAUGED WZNW POINT-OF-VIEW [J].
BALOG, J ;
FEHER, L ;
ORAIFEARTAIGH, L ;
FORGACS, P ;
WIPF, A .
ANNALS OF PHYSICS, 1990, 203 (01) :76-136
[3]  
BAUER M, 1991, SPHT91020 SACL PREPR
[4]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[5]  
BELAVIN AA, 1988, UNPUB KDV TYPE EQUAT
[6]   DEGENERATE CONFORMAL FIELD-THEORIES AND EXPLICIT EXPRESSIONS FOR SOME NULL VECTORS [J].
BENOIT, L ;
SAINTAUBIN, Y .
PHYSICS LETTERS B, 1988, 215 (03) :517-522
[7]   FOCK REPRESENTATIONS AND BRST COHOMOLOGY IN SL(2) CURRENT-ALGEBRA [J].
BERNARD, D ;
FELDER, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 127 (01) :145-168
[8]   HIDDEN SL(N) SYMMETRY IN CONFORMAL FIELD-THEORIES [J].
BERSHADSKY, M ;
OOGURI, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 126 (01) :49-83
[9]   THE 4-POINT CORRELATIONS OF ALL PRIMARY OPERATORS OF THE D=2 CONFORMALLY INVARIANT SU(2) SIGMA-MODEL WITH WESS-ZUMINO TERM [J].
CHRISTE, P ;
FLUME, R .
NUCLEAR PHYSICS B, 1987, 282 (02) :466-494
[10]  
CHRISTIE P, 1986, THESIS BONN U