SPHERE PACKING NUMBERS FOR SUBSETS OF THE BOOLEAN N-CUBE WITH BOUNDED VAPNIK-CHERVONENKIS DIMENSION

被引:195
作者
HAUSSLER, D [1 ]
机构
[1] MATH SCI RES INST,BERKELEY,CA 94720
关键词
D O I
10.1016/0097-3165(95)90052-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V subset of or equal to {0, 1}(n) have Vapnik-Chervonenkis dimension d. Let M(k/n, V) denote the cardinality of the largest W subset of or equal to V such that any two distinct vectors in W differ on at least k indices. We show that M(k/n, V) less than or equal to (cn/(k + d))(d) for some constant c. This improves on the previous best result of ((cn/k)log(n/k))(d). This new result has applications in the theory of empirical processes. (C) 1995 Academic Press, Inc.
引用
收藏
页码:217 / 232
页数:16
相关论文
共 40 条
[1]   COLORINGS AND ORIENTATIONS OF GRAPHS [J].
ALON, N ;
TARSI, M .
COMBINATORICA, 1992, 12 (02) :125-134
[2]  
ALON N, 1983, DISCRETE MATH, V24, P177
[3]  
ALON N, 1987, 3RD P S COMP GEOM WA, P331
[4]   DENSITY AND DIMENSION [J].
ASSOUAD, P .
ANNALES DE L INSTITUT FOURIER, 1983, 33 (03) :233-282
[5]  
BENDAVID S, 1992, 1992 P WORKSH COMP L
[6]   LEARNABILITY AND THE VAPNIK-CHERVONENKIS DIMENSION [J].
BLUMER, A ;
EHRENFEUCHT, A ;
HAUSSLER, D ;
WARMUTH, MK .
JOURNAL OF THE ACM, 1989, 36 (04) :929-965
[7]  
Bondy J. A., 1972, J COMBIN THEORY B, V12, P201
[8]  
Chazelle B., 1988, 29th Annual Symposium on Foundations of Computer Science (IEEE Cat. No.88CH2652-6), P539, DOI 10.1109/SFCS.1988.21970
[9]   QUASI-OPTIMAL RANGE SEARCHING IN SPACES OF FINITE VC-DIMENSION [J].
CHAZELLE, B ;
WELZL, E .
DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (05) :467-489
[10]   UNIVERSAL DONSKER CLASSES AND METRIC ENTROPY [J].
DUDLEY, RM .
ANNALS OF PROBABILITY, 1987, 15 (04) :1306-1326