CHAOS AROUND A BLACK-HOLE

被引:128
作者
BOMBELLI, L [1 ]
CALZETTA, E [1 ]
机构
[1] INST ASTRON & FIS, RA-1428 BUENOS AIRES, ARGENTINA
关键词
D O I
10.1088/0264-9381/9/12/004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We apply the Melnikov method for identifying chaos in near integrable systems to relativistic particle motion around a Schwarzschild black hole. We start by giving a self-contained introduction to the Melnikov method together with some relevant background on dynamical systems. Then we show that a relativistic particle has unstable circular orbits around a Schwarzschild black hole, and that each one of these gives rise to a homoclinic orbit in phase space, which tends to the unstable one for t --> +/-infinity. Finally, we use the Melnikov method to conclude that, under most periodic perturbations of the black-hole metric, the homoclinic orbit becomes chaotic.
引用
收藏
页码:2573 / 2599
页数:27
相关论文
共 80 条
[1]  
ALEKSEEV VM, 1981, PHYS REP, V75, P287, DOI 10.1016/0370-1573(81)90186-1
[2]  
[Anonymous], 1978, MATH METHODS CLASSIC, DOI [DOI 10.1007/978-1-4757-1693-1, 10.1007/978-1-4757-1693-1]
[3]  
Arnold V.I., 1988, ENCYCL MATH SCI, V3
[4]  
Arnold V.I., 1968, ERGODIC PROBLEMS CLA
[5]   CHAOS ON THE PSEUDOSPHERE [J].
BALAZS, NL ;
VOROS, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1986, 143 (03) :109-240
[6]   THE QUANTIZED BAKERS TRANSFORMATION [J].
BALAZS, NL ;
VOROS, A .
ANNALS OF PHYSICS, 1989, 190 (01) :1-31
[7]   CHAOTIC BEHAVIOR IN GENERAL-RELATIVITY [J].
BARROW, JD .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1982, 85 (01) :1-49
[8]   MIXMASTER COSMOLOGICAL MODEL IN THEORIES OF GRAVITY WITH A QUADRATIC LAGRANGIAN [J].
BARROW, JD ;
SIROUSSEZIA, H .
PHYSICAL REVIEW D, 1989, 39 (08) :2187-2191
[9]  
BARROW JD, 1987, PHYSICS PHASE SPACE, P18
[10]   OSCILLATORY APPROACH TO A SINGULAR POINT IN RELATIVISTIC COSMOLOGY [J].
BELINSKI.VA ;
KHALATNI.IM ;
LIFSHITZ, EM .
ADVANCES IN PHYSICS, 1970, 19 (80) :525-&