ON THRESHOLD DECODING OF CYCLIC CODES

被引:2
作者
CHOW, DK
机构
[1] United Aircraft Research Laboratories, East Hartford
来源
INFORMATION AND CONTROL | 1968年 / 13卷 / 05期
关键词
D O I
10.1016/S0019-9958(68)90909-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Bose-Chaudhuri-Hocquenghem (BCH) codes are very powerful random error-correcting techniques. We have investigated whether all BCH codes can be L-step orthogonalized, and have found a specific class of double error-correcting BCH codes which cannot be L-step orthogonalized. We show further that all BCH codes with length qm - 1, where q is a power of any prime p(q = p8), and all Euclidean geometry codes, can be one-step decoded by parity checks to correct a significant number of errors. These parity vectors need not be orthogonal to each other. For the general case, we have not been able to determine whether they can or cannot be decoded to their minimum distances by such a technique. The above codes decoded by nonorthogonal parity checks in the manner given herein are comparable to projective geometry codes, decoded by Rudolph's method. © 1969 Academic Press, Inc.
引用
收藏
页码:471 / &
相关论文
共 18 条
[1]  
BALAKRISHNAN AV, 1967, ADVANCES COMMUNIC ED, V3
[2]  
CARMICHAEL RD, 1937, INTRODUCTION THEORY
[3]  
Chow D. K., 1967, R368 U ILL COORD SCI
[4]  
CHOW DK, 1968, 2 ANN PRINC C INF SC
[5]  
DELSARTE P, 1967, R67 MBLE RES LAB BRU
[6]  
DELSARTE P, 1967, R68 MBLE RES LAB BRU
[7]  
GOETHALS JM, 1968, IEEE T INFORM THEORY, VIT14, P182
[8]  
KASAMI T, 1966, L66622 AF CR
[9]  
KASAMI T, 1966, L66142 AF CR
[10]  
Kasami T., 1966, R285 U ILL COORD SCI