DYNAMICAL INVARIANTS AND TIME-DEPENDENT HARMONIC SYSTEMS

被引:70
作者
KORSCH, HJ
机构
[1] Fachbereich Physik, Universität Kaiserslautern
关键词
D O I
10.1016/0375-9601(79)90798-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A simplified algebraic derivation of the dynamical (Lewis) invariant for the time-dependent harmonic oscillator is presented. The treatment is based on the concept of the dynamical algebra. © 1979.
引用
收藏
页码:294 / 296
页数:3
相关论文
共 17 条
[1]   CONNECTION BETWEEN MAXIMAL ENTROPY AND SCATTERING THEORETIC ANALYSES OF COLLISION PROCESSES [J].
ALHASSID, Y ;
LEVINE, RD .
PHYSICAL REVIEW A, 1978, 18 (01) :89-116
[2]   NOTE ON TIME-DEPENDENT HARMONIC-OSCILLATOR [J].
ELIEZER, CJ ;
GRAY, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1976, 30 (03) :463-468
[4]  
Leach P. G. L., 1977, Journal of the Australian Mathematical Society, Series B (Applied Mathematics), V20, P97, DOI 10.1017/S0334270000001466
[5]   THEORY OF TIME-DEPENDENT LINEAR CANONICAL TRANSFORMATIONS AS APPLIED TO HAMILTONIANS OF HARMONIC-OSCILLATOR TYPE [J].
LEACH, PGL .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (08) :1608-1611
[6]   NOTE ON THE TIME-DEPENDENT DAMPED AND FORCED HARMONIC-OSCILLATOR [J].
LEACH, PGL .
AMERICAN JOURNAL OF PHYSICS, 1978, 46 (12) :1247-1249
[8]   QUADRATIC HAMILTONIANS, QUADRATIC INVARIANTS AND SYMMETRY GROUP SU(N) [J].
LEACH, PGL .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (02) :446-451
[9]  
LEACH PGL, 1977, J MATH PHYS, V18, P1902, DOI 10.1063/1.523161
[10]  
LEWIS HR, 1967, PHYS REV LETT, V18, P636, DOI 10.1103/PhysRevLett.18.636.2