NONUNIQUENESS FOR THE HEAT-FLOW OF HARMONIC MAPS

被引:48
作者
CORON, JM
机构
[1] Université Paris-Sud, Département de Mathématiques, Orsay
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 1990年 / 7卷 / 04期
关键词
58E20; 58G11; Harmonic maps; Heat flow; Uniqueness;
D O I
10.1016/S0294-1449(16)30295-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct maps u0 : B3 → S2 such that the Cauchy problem « find u : B3 × [0, + ∞) → S2 such that u(x, 0) = u0(x) in B3, ut−Δu=u|∇u|2, u = u0 on ∂B3 × [0, + ∞) » has infinitely many weak solutions. © 2016 L'Association Publications de l'Institut Henri Poincaré
引用
收藏
页码:335 / 344
页数:10
相关论文
共 10 条
[1]   HARMONIC MAPS WITH DEFECTS [J].
BREZIS, H ;
CORON, JM ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 107 (04) :649-705
[2]   EXISTENCE AND PARTIAL REGULARITY RESULTS FOR THE HEAT-FLOW FOR HARMONIC MAPS [J].
CHEN, YM ;
STRUWE, M .
MATHEMATISCHE ZEITSCHRIFT, 1989, 201 (01) :83-103
[3]   THE WEAK SOLUTIONS TO THE EVOLUTION PROBLEMS OF HARMONIC MAPS [J].
CHEN, YM .
MATHEMATISCHE ZEITSCHRIFT, 1989, 201 (01) :69-74
[4]  
Cohen R., 1987, IMA VOL MATH APPL, V5, P99
[5]  
CORON JM, 1989, CR ACAD SCI I-MATH, V308, P339
[6]  
HARDT R, 1988, ANN I H POINCARE-AN, V5, P297
[7]  
KELLER J, 1988, REACTION DIFFUSION P
[8]   A MONOTONICITY FORMULA FOR YANG-MILLS FIELDS [J].
PRICE, P .
MANUSCRIPTA MATHEMATICA, 1983, 43 (2-3) :131-166
[9]  
STRUWE M, 1988, J DIFFER GEOM, V28, P485
[10]   ON THE EVOLUTION OF HARMONIC-MAPPINGS OF RIEMANNIAN SURFACES [J].
STRUWE, M .
COMMENTARII MATHEMATICI HELVETICI, 1985, 60 (04) :558-581