INTEGRABILITY OF OPEN SPIN CHAINS WITH QUANTUM ALGEBRA SYMMETRY

被引:119
作者
MEZINCESCU, L
NEPOMECHIE, RI
机构
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 1991年 / 6卷 / 29期
关键词
D O I
10.1142/S0217751X91002458
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We construct an open quantum spin chain from the "twisted" A2(2) R matrix in the fundamental representation which has the quantum algebra symmetry U(q)[su(2)]. This anisotropic spin-1 chain is different from the U(q)[su(2)]-invariant chain constructed from the "untwisted" A1(1) spin-1 R matrix (namely, the spin-1 XXZ chain of Fateev-Zamolodchikov with boundary terms) but, nevertheless, is also completely integrable. We discuss the general case of an R matrix of the type g(k), where k is-an-element-of {1, 2, 3}, and g is any simple Lie algebra.
引用
收藏
页码:5231 / 5248
页数:18
相关论文
empty
未找到相关数据