2-DIMENSIONAL RECTANGLE PACKING - ONLINE METHODS AND RESULTS

被引:19
作者
CSIRIK, J
FRENK, JBG
LABBE, M
机构
[1] Econometrisch Instituut, Erasmus Universiteit Rotterdam, 3000 DR Rotterdam
关键词
D O I
10.1016/0166-218X(93)90009-D
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The first algorithms for the on-line two-dimensional rectangle packing problem were introduced by Coppersmith and Raghavan. They showed that for a family of heuristics 13/4 is an upper bound for the asymptotic worst-case ratios. We have investigated the Next Fit and the First Fit variants of their method. We proved that the asymptotic worst-case ratio equals 13/4 for the Next Fit variant and that 49/16 is an upper bound of the asymptotic worst-case ratio for the First Fit variant.
引用
收藏
页码:197 / 204
页数:8
相关论文
共 6 条
[1]   ON PACKING TWO-DIMENSIONAL BINS [J].
CHUNG, FRK ;
GAREY, MR ;
JOHNSON, DS .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1982, 3 (01) :66-76
[2]   MULTIDIMENSIONAL ONLINE BIN PACKING - ALGORITHMS AND WORST-CASE ANALYSIS [J].
COPPERSMITH, D ;
RAGHAVAN, P .
OPERATIONS RESEARCH LETTERS, 1989, 8 (01) :17-20
[3]  
GALAMBOS G, COMMUNICATION
[4]  
Johnson D. S., 1974, SIAM Journal on Computing, V3, P299, DOI 10.1137/0203025
[5]  
LI K, 1990, GENERALIZED HARMONIC
[6]   A LOWER BOUND FOR ONLINE BIN PACKING [J].
LIANG, FM .
INFORMATION PROCESSING LETTERS, 1980, 10 (02) :76-79