INACTIVATION DETERMINED BY A SINGLE SITE IN K+ PORES

被引:90
作者
DEBIASI, M
HARTMANN, HA
DREWE, JA
TAGLIALATELA, M
BROWN, AM
KIRSCH, GE
机构
[1] BAYLOR COLL MED,DEPT MOLEC PHYSIOL & BIOPHYS,1 BAYLOR PLAZA,HOUSTON,TX 77030
[2] BAYLOR COLL MED,DEPT ANESTHESIOL,HOUSTON,TX 77030
来源
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY | 1993年 / 422卷 / 04期
关键词
K+ CHANNEL INACTIVATION; N-TYPE INACTIVATION; C-TYPE INACTIVATION; PORE OR P-TYPE INACTIVATION; EXTERNAL TEA ENHANCEMENT OF CURRENT; EXTERNAL K+ ENHANCEMENT OF CURRENT; CONDUCTANCE; PORE MUTATIONS;
D O I
10.1007/BF00374291
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
An N-terminus peptide or a C-terminus mechanism involving a single residue in transmembrane segment 6 produces inactivation in voltage-dependent K+ channels. Here we show that a single position in the pore of K+ channels can produce inactivation having characteristics distinct from either N- or C-type inactivation. In a chimeric K+ channel (CHM), the point reversion CHM V 369I produced fast inactivation and CHM V 369S had the additional effect of halving K+ conductance consistent with a position in the pore. The result was not restricted to CHM; mutating position 369 in the naturally occurring channel Kv2.1 also produced fast inactivation. Like N- and C-types of inactivation, pore or P-type inactivation was characterized by short bursts terminated by rapid entry into the inactivated state. Unlike C-type inactivation, in which external tetraethylammonium (TEA) produced a simple blockade that slowed inactivation and reduced currents, in P-type inactivation external TEA increased currents. Unlike N-type inactivation, internal TEA produced a simple reduction in current and K+ occupancy of the pore had no effect. External TEA was not the only cation to increase current; external K+ enhanced channel availability and recovery from inactivation. Additional features of P-type inactivation were residue-specific effects on the extent of inactivation and removal of inactivation by a point reversion at position 374, which also regulates conductance. The demonstration of P-type inactivation indicates that pore residues in K+ channels may be part of the inactivation gating machinery.
引用
收藏
页码:354 / 363
页数:10
相关论文
共 28 条
[2]   INACTIVATION OF SODIUM CHANNEL .1. SODIUM CURRENT EXPERIMENTS [J].
BEZANILLA, F ;
ARMSTRONG, CM .
JOURNAL OF GENERAL PHYSIOLOGY, 1977, 70 (05) :549-566
[3]   CURRENT INACTIVATION INVOLVES A HISTIDINE RESIDUE IN THE PORE OF THE RAT LYMPHOCYTE POTASSIUM CHANNEL RGK5 [J].
BUSCH, AE ;
HURST, RS ;
NORTH, RA ;
ADELMAN, JP ;
KAVANAUGH, MP .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1991, 179 (03) :1384-1390
[4]   TETRAETHYLAMMONIUM BLOCKADE DISTINGUISHES 2 INACTIVATION MECHANISMS IN VOLTAGE-ACTIVATED K+ CHANNELS [J].
CHOI, KL ;
ALDRICH, RW ;
YELLEN, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (12) :5092-5095
[5]   THE INACTIVATION GATE OF THE SHAKER K+ CHANNEL BEHAVES LIKE AN OPEN-CHANNEL BLOCKER [J].
DEMO, SD ;
YELLEN, G .
NEURON, 1991, 7 (05) :743-753
[6]   A NOVEL POTASSIUM CHANNEL WITH DELAYED RECTIFIER PROPERTIES ISOLATED FROM RAT-BRAIN BY EXPRESSION CLONING [J].
FRECH, GC ;
VANDONGEN, AMJ ;
SCHUSTER, G ;
BROWN, AM ;
JOHO, RH .
NATURE, 1989, 340 (6235) :642-645
[7]   GATING OF NA CHANNELS - INACTIVATION MODIFIERS DISCRIMINATE AMONG MODELS [J].
GONOI, T ;
HILLE, B .
JOURNAL OF GENERAL PHYSIOLOGY, 1987, 89 (02) :253-274
[8]   TEA PREVENTS INACTIVATION WHILE BLOCKING OPEN K+ CHANNELS IN HUMAN LYMPHOCYTES-T [J].
GRISSMER, S ;
CAHALAN, M .
BIOPHYSICAL JOURNAL, 1989, 55 (01) :203-206
[9]   EXCHANGE OF CONDUCTION PATHWAYS BETWEEN 2 RELATED K+ CHANNELS [J].
HARTMANN, HA ;
KIRSCH, GE ;
DREWE, JA ;
TAGLIALATELA, M ;
JOHO, RH ;
BROWN, AM .
SCIENCE, 1991, 251 (4996) :942-944
[10]   BIOPHYSICAL AND MOLECULAR MECHANISMS OF SHAKER POTASSIUM CHANNEL INACTIVATION [J].
HOSHI, T ;
ZAGOTTA, WN ;
ALDRICH, RW .
SCIENCE, 1990, 250 (4980) :533-538