ASYMPTOTIC SHAPE OF A FULLERENE BALL

被引:83
作者
WITTEN, TA
LI, H
机构
[1] James Franck Institute, University of Chicago, Chicago, IL
来源
EUROPHYSICS LETTERS | 1993年 / 23卷 / 01期
关键词
PHYSICAL PROPERTIES OF THIN FILMS; NONELECTRONIC; MACROMOLECULES AND POLYMER MOLECULES; MATHEMATICAL THEORY OF ELASTICITY;
D O I
10.1209/0295-5075/23/1/009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We infer scaling of the shape and energy of a space-enclosing elastic sheet such as a large fullerene ball of linear dimension R. Stretching deformation is crucial in determining the optimal shape, in conjunction with bending. The asymptotic shape of a symmetrical fullerene ball is a flat-sided polyhedron whose edges have an average curvature radius of order R2/3. The predicted asymptotic energy is concentrated in these edges and is of order R1/3. Analogous edges with this scaling property should occur generally in elastic sheets with discrete disclinations.
引用
收藏
页码:51 / 55
页数:5
相关论文
共 9 条
[1]   PROBING C-60 [J].
CURL, RF ;
SMALLEY, RE .
SCIENCE, 1988, 242 (4881) :1017-1022
[2]  
CURL RF, 1991, SCI AM OCT, P51
[3]   EXTRACTION AND STM IMAGING OF SPHERICAL GIANT FULLERENES [J].
LAMB, LD ;
HUFFMAN, DR ;
WORKMAN, RK ;
HOWELLS, S ;
CHEN, T ;
SARID, D ;
ZIOLO, RF .
SCIENCE, 1992, 255 (5050) :1413-1416
[4]  
Landau L.D., 1963, THEORY ELASTICITY, DOI 10.1016/C2009-0-25521-8
[5]  
NELSON D, 1989, STATISTICAL MECHANIC, P143
[6]  
NELSON D, 1989, STATISTICAL MECHANIC
[7]   DEFECTS IN FLEXIBLE MEMBRANES WITH CRYSTALLINE ORDER [J].
SEUNG, HS ;
NELSON, DR .
PHYSICAL REVIEW A, 1988, 38 (02) :1005-1018
[8]   ENERGIES OF FULLERENES [J].
TERSOFF, J .
PHYSICAL REVIEW B, 1992, 46 (23) :15546-15549
[9]   SYSTEMATIC STUDY OF STRUCTURES AND STABILITIES OF FULLERENES [J].
ZHANG, BL ;
XU, CH ;
WANG, CZ ;
CHAN, CT ;
HO, KM .
PHYSICAL REVIEW B, 1992, 46 (11) :7333-7336