2 EDGE-DISJOINT HAMILTONIAN CYCLES IN THE BUTTERFLY GRAPH

被引:32
作者
BARTH, D [1 ]
RASPAUD, A [1 ]
机构
[1] UNIV BORDEAUX 1,LABRI,CNRS,URA 1304,F-33405 TALENCE,FRANCE
关键词
COMBINATORIAL PROBLEMS; COMPUTER ARCHITECTURE; BUTTERFLY GRAPH; CAYLEY GRAPHS; HAMILTONIAN CYCLES;
D O I
10.1016/0020-0190(94)00087-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show that the butterfly graph contains two edge-disjoint hamiltonian cycles by giving a recursive method of construction of this cycles. This solves a conjecture proposed by D. Sotteau and J. Rowley.
引用
收藏
页码:175 / 179
页数:5
相关论文
共 11 条
[1]  
Alspach B., 1985, ANN DISCRETE MATH, V27, P464
[2]  
AMESTOY PR, 1992, LECTURE NOTES COMPUT, P319
[3]   GROUP ACTION GRAPHS AND PARALLEL ARCHITECTURES [J].
ANNEXSTEIN, F ;
BAUMSLAG, M ;
ROSENBERG, AL .
SIAM JOURNAL ON COMPUTING, 1990, 19 (03) :544-569
[4]  
Berge C., 1976, GRAPHS HYPERGRAPHS
[5]   HAMILTONIAN DECOMPOSITION OF CAYLEY-GRAPHS OF DEGREE-4 [J].
BERMOND, JC ;
FAVARON, O ;
MAHEO, M .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 46 (02) :142-153
[6]  
DERUMEUR J, 1993, IN PRESS COMMUNICATI
[7]  
FRAIGNIAUD P, 1991, LRI701 U PARIS SUD C
[8]  
LAKSHMIVARAHAN S, 1991, ANAL SYMMETRY INTERC
[9]  
Leighton FT., 1992, INTRO PARALLEL ALGOR
[10]  
SOTTEAU D, 1992, COMMUNICATION