Q-ANALOGS OF CLIFFORD AND WEYL ALGEBRAS - SPINOR AND OSCILLATOR REPRESENTATIONS OF QUANTUM ENVELOPING-ALGEBRAS

被引:321
作者
HAYASHI, T
机构
[1] Department of Mathematics, Faculty of Science, Nagoya University, Nagoya, 464, Chikusa-ku
关键词
D O I
10.1007/BF02096497
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce q-analogues of Clifford and Weyl algebras. Using these, we construct spinor and oscillator representations of quantum enveloping algebras of type AN-1, BN, CN, DN and AN-1(1). Also we discuss the irreducibility and the unitarity of these representations. © 1990 Springer-Verlag.
引用
收藏
页码:129 / 144
页数:16
相关论文
共 12 条
[1]  
BERNARD D, 1988, VERTEX OPERATOR REPR
[2]   OPERATOR APPROACH TO THE KADOMTSEV-PETVIASHVILI EQUATION - TRANSFORMATION GROUPS FOR SOLITON-EQUATIONS III [J].
DATE, E ;
JIMBO, M ;
KASHIWARA, M ;
MIWA, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1981, 50 (11) :3806-3812
[3]  
DATE E, 1989, REPRESENTATIONS UQGL
[4]  
DRINFELD VG, 1986, ICM P BERKELEY, P798
[5]   CLASSICAL AFFINE ALGEBRAS [J].
FEINGOLD, AJ ;
FRENKEL, IB .
ADVANCES IN MATHEMATICS, 1985, 56 (02) :117-172
[6]  
FRENKEL IB, 1988, VERTEX REPRESENTATIO
[7]  
JIMBO M, 1986, LETT MATH PHYS, V11, P247, DOI 10.1007/BF00400222
[8]   A Q-DIFFERENCE ANALOG OF U(G) AND THE YANG-BAXTER EQUATION [J].
JIMBO, M .
LETTERS IN MATHEMATICAL PHYSICS, 1985, 10 (01) :63-69
[9]   YANG-BAXTER EQUATION AND REPRESENTATION-THEORY .1. [J].
KULISH, PP ;
RESHETIKHIN, NY ;
SKLYANIN, EK .
LETTERS IN MATHEMATICAL PHYSICS, 1981, 5 (05) :393-403
[10]   QUANTUM DEFORMATIONS OF CERTAIN SIMPLE MODULES OVER ENVELOPING-ALGEBRAS [J].
LUSZTIG, G .
ADVANCES IN MATHEMATICS, 1988, 70 (02) :237-249