MINERAL AND MATRIX CONTRIBUTIONS TO RIGIDITY IN FRACTURE-HEALING

被引:30
作者
CHAKKALAKAL, DA [1 ]
LIPPIELLO, L [1 ]
WILSON, RF [1 ]
SHINDELL, R [1 ]
CONNOLLY, JF [1 ]
机构
[1] UNIV NEBRASKA, MED CTR, DEPT ORTHOPAED SURG, OMAHA, NE 68105 USA
关键词
D O I
10.1016/0021-9290(90)90297-G
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The purpose of this study was to investigate the relationships among selected properties of fracture callus: bending rigidity, tissue density, mineral density, matrix density and mineral-to-matrix ratio. The experimental model was an osteotomized canine radius in which the development of the fracture callus was modified by electrical stimulation with various levels of direct current. This resulted in a range of values for the selected properties of the callus, determined post mortem at 7 weeks after osteotomy. We found that the rigidity (R) of the bone-callus combination obeyed relationships of the form R = axb, where x is the tissue density, mineral density, matrix density or the mineral-to-matrix ratio of the repair tissue. These are analogous to power-law relationships found in studies of compact and cancellous bone. The results suggest that fracture callus at 7 weeks after osteotomy in canine radius behaves more like immature compact bone than cancellous bone in its mechanical and physicochemical properties. The present study demonstrates the feasibility of developing non-invasive in vivo densitometric methods to monitor fracture healing, since models may be developed that can predict mechanical properties from densitometric data. Further studies are needed to develop a refined model based on experimental data on the mechanical and physicochemical properties and microstructure of fracture callus at different stages of healing. © 1990.
引用
收藏
页码:425 / 434
页数:10
相关论文
共 30 条
[1]  
AKAI M, 1984, CLIN ORTHOP RELAT R, V18, P293
[2]   QUANTITATIVE HISTOLOGICAL EVALUATION OF EARLY FRACTURE HEALING OF CORTICAL BONES IMMOBILIZED BY STAINLESS-STEEL AND COMPOSITE PLATES [J].
AKESON, WH ;
WOO, SLY ;
COUTTS, RD ;
MATTHEWS, JV ;
GONSALVES, M ;
AMIEL, D .
CALCIFIED TISSUE RESEARCH, 1975, 19 (01) :27-37
[3]  
ALHO A, 1988, CLIN ORTHOP RELAT R, P292
[4]   ELASTIC PROPERTIES OF CANCELLOUS BONE - MEASUREMENT BY AN ULTRASONIC TECHNIQUE [J].
ASHMAN, RB ;
CORIN, JD ;
TURNER, CH .
JOURNAL OF BIOMECHANICS, 1987, 20 (10) :979-986
[5]   ELASTIC-MODULUS OF TRABECULAR BONE MATERIAL [J].
ASHMAN, RB ;
RHO, JY .
JOURNAL OF BIOMECHANICS, 1988, 21 (03) :177-181
[6]   MECHANICAL STRENGTH OF TIBIAL TRABECULAR BONE EVALUATED BY X-RAY COMPUTED-TOMOGRAPHY [J].
BENTZEN, SM ;
HVID, I ;
JORGENSEN, J .
JOURNAL OF BIOMECHANICS, 1987, 20 (08) :743-&
[7]   CONTRIBUTION OF COLLAGEN AND MINERAL TO ELASTIC-PLASTIC PROPERTIES OF BONE [J].
BURSTEIN, AH ;
ZIKA, JM ;
HEIPLE, KG ;
KLEIN, L .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1975, 57 (07) :956-961
[8]   COMPRESSIVE BEHAVIOR OF BONE AS A 2-PHASE POROUS STRUCTURE [J].
CARTER, DR ;
HAYES, WC .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1977, 59 (07) :954-962
[9]   MECHANICAL CONSEQUENCES OF VARIATION IN MINERAL CONTENT OF BONE [J].
CURREY, JD .
JOURNAL OF BIOMECHANICS, 1969, 2 (01) :1-+