SOME REQUIREMENTS ON THE REFERENCE LOADING WITH LARGE STRESS GRADIENT FOR THE CALCULATION OF WEIGHT-FUNCTIONS USING THE PETROSKI-ACHENBACH METHOD

被引:15
作者
NIU, X
机构
[1] Department of Mechanical Engineering, University College London, London, WC1E 7JE, Torrington Place
关键词
D O I
10.1016/0013-7944(90)90106-Q
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The Petroski-Achenbach method has been examined for various non-uniform reference loading systems. It has been shown that the stress fields with very large gradients can be used as the reference loading, and that the stress gradient and number of terms used in the crack opening displacement approximation are not the main reasons to cause the occasional failure of the method. © 1990.
引用
收藏
页码:167 / 172
页数:6
相关论文
共 11 条
[1]   WEIGHT FUNCTIONS FOR NOTCHED BAR [J].
BUECKNER, HF .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1971, 51 (02) :97-+
[2]  
BUECKNER HF, 1970, Z ANGEW MATH MECH, V50, P529
[4]   LIMITATIONS OF THE PETROSKI-ACHENBACH CRACK OPENING DISPLACEMENT APPROXIMATION FOR THE CALCULATION OF WEIGHT-FUNCTIONS [J].
GORNER, F ;
MATTHECK, C ;
MORAWIETZ, P ;
MUNZ, D .
ENGINEERING FRACTURE MECHANICS, 1985, 22 (02) :269-277
[5]   STRESS INTENSITY FACTOR AT THE SURFACE AND AT THE DEEPEST POINT OF A SEMI-ELLIPTICAL SURFACE CRACK IN PLATES UNDER STRESS GRADIENTS [J].
MATTHECK, C ;
MORAWIETZ, P ;
MUNZ, D .
INTERNATIONAL JOURNAL OF FRACTURE, 1983, 23 (03) :201-212
[6]  
NIU X, 1987, INT J FRACTURE, V35, P3
[7]   ON THE LIMITATIONS OF THE PETROSKI-ACHENBACH CRACK OPENING DISPLACEMENT APPROXIMATION FOR THE CALCULATION OF WEIGHT FUNCTION - DO THEY REALLY EXIST [J].
NIU, X ;
GLINKA, G .
ENGINEERING FRACTURE MECHANICS, 1987, 26 (05) :701-706
[8]   COMPUTATION OF WEIGHT FUNCTION FROM A STRESS INTENSITY FACTOR [J].
PETROSKI, HJ ;
ACHENBACH, JD .
ENGINEERING FRACTURE MECHANICS, 1978, 10 (02) :257-266
[9]  
Rice J.R., 1972, INT J SOLIDS STRUCT, V8, P751, DOI DOI 10.1016/0020-7683(72)90040-6
[10]  
Wigglesworth L.A., 1957, MATHEMATIKA, V4, P76, DOI 10.1112/s002557930000111x