A PRIMAL PARTITIONING SOLUTION FOR THE ARC-CHAIN FORMULATION OF A MULTICOMMODITY NETWORK FLOW PROBLEM

被引:42
作者
FARVOLDEN, JM [1 ]
POWELL, WB [1 ]
LUSTIG, IJ [1 ]
机构
[1] PRINCETON UNIV,DEPT CIVIL ENGN & OPERAT RES,PRINCETON,NJ 08544
关键词
D O I
10.1287/opre.41.4.669
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We present a new solution approach for the multicommodity network flow problem (MCNF) based upon both primal partitioning and decomposition techniques, which simplifies the computations required by the simplex method. The partitioning is performed on an arc-chain incidence matrix of the MCNF, similar within a change of variables to the constraint matrix of the master problem generated in a Dantzig-Wolfe decomposition, to isolate a very sparse, near-triangular working basis of greatly reduced dimension. The majority of the simplex operations performed on the partitioned basis are simply additive and network operations specialized for the nine possible pivot types identified. The columns of the arc-chain incidence matrix are generated by a dual network simplex method for updating shortest paths when link costs change.
引用
收藏
页码:669 / 693
页数:25
相关论文
共 33 条
  • [1] COMPUTATIONAL COMPARISON AMONG 3 MULTICOMMODITY NETWORK FLOW ALGORITHMS
    ALI, A
    HELGASON, R
    KENNINGTON, J
    LALL, H
    [J]. OPERATIONS RESEARCH, 1980, 28 (04) : 995 - 1000
  • [2] MULTICOMMODITY NETWORK FLOWS - SURVEY
    ASSAD, AA
    [J]. NETWORKS, 1978, 8 (01) : 37 - 91
  • [3] ASSAD AA, 1976, THESIS MIT CAMBRIDGE
  • [4] BARR R, 1986, ANN SOC LOGISTICS EN, V1, P66
  • [5] CAROLAN WJ, 1991, OPER RES, V38, P2400
  • [6] *CDC CORP, 1974, 7606000 AP 3 REF MAN
  • [7] THE AT-AND-T KORBX SYSTEM
    CHENG, YC
    HOUCK, DJ
    LIU, JM
    MEKETON, MS
    SLUTSMAN, L
    VANDERBEI, RJ
    WANG, P
    [J]. AT&T TECHNICAL JOURNAL, 1989, 68 (03): : 7 - 19
  • [8] TRAFFIC ASSIGNMENT PROBLEM FOR A GENERAL NETWORK
    DAFERMOS, SC
    SPARROW, FT
    [J]. JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICAL SCIENCES, 1969, B 73 (02): : 91 - +
  • [9] Dantzig G. B., 1967, J COMPUTER SYSTEM SC, V1, P213, DOI [DOI 10.1016/S0022-0000%2867%2980015-1, 10.1016/S0022-0000%2867%2980015-1]
  • [10] THE DECOMPOSITION ALGORITHM FOR LINEAR-PROGRAMS
    DANTZIG, GB
    WOLFE, P
    [J]. ECONOMETRICA, 1961, 29 (04) : 767 - 778