Do the effects of piscivorous largemouth bass cascade to the plankton?

被引:21
作者
Baca, RM
Drenner, RW
机构
[1] Department of Biology, Texas Christian University, Fort Worth, 76129, TX
关键词
Piscivores; planktivores; trophic cascade;
D O I
10.1007/BF00016895
中图分类号
Q17 [水生生物学];
学科分类号
071004 ;
摘要
Ecologists have hypothesized that an increase in the biomass of piscivorous fish in lakes will cause a decrease in populations of planktivorous fish, an increase in the size of herbivorous zooplankton and a decrease in the biomass of phytoplankton. Here we present an experimental test of whether the effects of largemouth bass (Micropterus salmoides) cascade to the planktivorous fish, zooplankton and phytoplankton of a 15-ha water storage reservoir. A pilot study indicated that the reservoir was eutrophic with dense populations of planktivorous fish dominated by threadfin shad (Dorosoma petenense). No piscivorous fish were present in the reservoir. We conducted a one-month mesocosm experiment using water and plankton from the reservoir showing that the presence of threadfin shad reduced large-sized zooplankton and increased the productivity and biomass of phytoplankton. To test whether the effects of piscivorous fish could cascade to the plankton, we assessed the effects of the addition of piscivorous largemouth bass on the planktivorous fish, zooplankton and biomass of phytoplankton of the reservoir by monitoring the reservoir during the year before and the two years after largemouth bass were stocked. In the second year after the addition of largemouth bass, the number of planktivorous fish decreased and the relative abundance of threadfin shad declined. Although the abundance of cladocerans increased after the addition of largemouth bass, the average size of zooplankton did not change. We did not detect changes in chlorophyll a, Secchi depth, or concentrations of total phosphorus and total nitrogen as a result of the addition of largemouth bass.
引用
收藏
页码:139 / 151
页数:13
相关论文
共 96 条
[1]   CONDITIONS FOR EFFECTIVE BIOMANIPULATION - CONCLUSIONS DERIVED FROM WHOLE-LAKE EXPERIMENTS IN EUROPE [J].
BENNDORF, J .
HYDROBIOLOGIA, 1990, 200 :187-203
[2]  
BENNDORF J, 1988, Limnologica, V19, P97
[3]  
BENNDORF J, 1988, Limnologica, V19, P5
[4]  
BENNDORF J, 1984, HYDROBIOLOGIA, V69, P407
[5]  
BLINN DW, 1993, T AM FISH SOC, V122, P139, DOI 10.1577/1548-8659(1993)122<0139:NEORTP>2.3.CO
[6]  
2
[7]   PREDATOR-INDUCED PHENOTYPICAL CHANGE IN BODY MORPHOLOGY IN CRUCIAN CARP [J].
BRONMARK, C ;
MINER, JG .
SCIENCE, 1992, 258 (5086) :1348-1350
[8]   PREDATION BODY SIZE AND COMPOSITION OF PLANKTON [J].
BROOKS, JL ;
DODSON, SI .
SCIENCE, 1965, 150 (3692) :28-&
[9]   CASCADING TROPHIC INTERACTIONS AND LAKE PRODUCTIVITY [J].
CARPENTER, SR ;
KITCHELL, JF ;
HODGSON, JR .
BIOSCIENCE, 1985, 35 (10) :634-639
[10]   REGULATION OF LAKE PRIMARY PRODUCTIVITY BY FOOD WEB STRUCTURE [J].
CARPENTER, SR ;
KITCHELL, JF ;
HODGSON, JR ;
COCHRAN, PA ;
ELSER, JJ ;
ELSER, MM ;
LODGE, DM ;
KRETCHMER, D ;
HE, X ;
VONENDE, CN .
ECOLOGY, 1987, 68 (06) :1863-1876