DEPENDENCE POLYNOMIALS

被引:56
作者
FISHER, DC
SOLOW, AE
机构
[1] HARVEY MUDD COLL,DEPT MATH,CLAREMONT,CA 91711
[2] GRINNELL COLL,DEPT MATH,GRINNELL,IA 50112
关键词
D O I
10.1016/0012-365X(90)90202-S
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let the dependence polynomial of a graph G be 1-c1z+c2z2-c3z3+. .. where ck is the number of k-complete subgraphs of G. The dependence polynomial arises in the problem of counting words formed from an alphabet on which some commutativity conditions are placed. The key result is that the reciprocal of the dependence polynomial is the generating function for this problem. We compute dependence polynomials for several classes of graphs and explore their behavior under graph operations. We show the smallest (in absolute value) root of the dependence polynomial is real and positive. This gives a new lower bound on the number of triangles in a K4-free graph: c3≥ 9c2c1-2c31-2(c2 1-3c2) 3 2 27, improving a previous bound of Bollobás. © 1990.
引用
收藏
页码:251 / 258
页数:8
相关论文
共 9 条
[1]  
Bollobas B., 1978, LONDON MATH SOC MONO
[2]  
CARTIER P, 1969, LECTURE NOTES MATH, V85
[3]  
CHARTAND G, 1986, GRAPHS DIGRAPHS
[4]   THE NUMBER OF WORDS OF LENGTH N IN A GRAPH MONOID [J].
FISHER, DC .
AMERICAN MATHEMATICAL MONTHLY, 1989, 96 (07) :610-614
[5]  
FISHER DC, IN PRESS DISCRETE MA
[6]   GRAPH MONOIDS [J].
KIM, KH ;
MAKARLIMANOV, LG ;
ROUSH, FW .
SEMIGROUP FORUM, 1982, 25 (1-2) :1-7
[7]  
Lovasz L., 1979, COMBINATORIAL PROBLE
[8]  
Markushevich A., 1977, THEORY FUNCTIONS COM
[9]  
SCHWENK A, 1987, C NUMER, V58, P15