ON THE LEAST-SQUARES DETERMINATION OF LATTICE DIMENSIONS - A MODIFIED SINGULAR VALUE DECOMPOSITION APPROACH TO ILL-CONDITIONED CASES

被引:10
作者
ANSELMITAMBURINI, U [1 ]
SPINOLO, G [1 ]
机构
[1] UNIV PAVIA,CNR,CSTE,I-27100 PAVIA,ITALY
关键词
D O I
10.1107/S0021889892006010
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A modification is described of the singular value decomposition (SVD) method suitable for under-determined linear least squares (LLS). When a set of data to be fitted is incomplete and does not allow an independent determination of all model parameters, the modified method automatically merges a previously available approximate solution into the LLS results. The solution so produced is more appropriate to the particular problem than the usual SVD solution, while still being a LLS estimate of the whole set of parameters. The method is discussed with reference to the LLS determination of unit-cell dimensions during the step-by-step assignment of h, k, l indices of a diffraction pattern.
引用
收藏
页码:5 / 8
页数:4
相关论文
共 9 条
[1]  
[Anonymous], 1988, NUMERICAL RECIPES AR
[2]  
BROWN A, 1983, ADV X RAY ANAL, V26, P11
[3]   Precision lattice constants from x-ray powder photographs [J].
Cohen, MU .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1935, 6 (03) :68-74
[4]  
DONNAY JDH, 1967, INT TABLE XRAY CRYST, V2, P99
[5]  
FORSYTHE GE, 1977, COMPUTER METHODS MAT, pCH9
[6]  
GOLUB GH, 1983, MATRIX COMPUTATIONS, pCH8
[7]   DETERMINATION OF LATTICE PARAMETERS WITH THE AID OF A COMPUTER [J].
MUELLER, MH ;
HEATON, L ;
MILLER, KT .
ACTA CRYSTALLOGRAPHICA, 1960, 13 (10) :828-829
[8]  
PARRISH W, 1967, INT TABLES XRAY CRYS, V2, P216
[9]  
Wilson ACJ, 1963, MATH THEORY XRAY POW