MULTIDIMENSIONAL ITERATIVE INTERPOLATION

被引:25
作者
DESLAURIERS, G
DUBOIS, J
DUBUC, S
机构
[1] ECOLE POLYTECH,DEPT MATH APPL,MONTREAL H3C 3A7,QUEBEC,CANADA
[2] UNIV SHERBROOKE,DEPT MATH & INFORMAT,SHERBROOKE J1K 2R1,QUEBEC,CANADA
[3] UNIV MONTREAL,DEPT MATH & STAT,MONTREAL H3C 3J7,QUEBEC,CANADA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 1991年 / 43卷 / 02期
关键词
ITERATIVE INTERPOLATION PROCESS; FUNDAMENTAL INTERPOLATING FUNCTION; CHARACTERISTIC FUNCTION; CONTINUOUS INTERPOLATION; TEMPERATE DISTRIBUTION; FOURIER TRANSFORM;
D O I
10.4153/CJM-1991-016-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define an iterative interpolation process for data spread over a closed discrete subgroup of the Euclidean space. We describe the main algebraic properties of this process. This interpolation process, under very weak assumptions, is always convergent in the sense of Schwartz distributions. We find also a convenient necessary and sufficient condition for continuity of each interpolation function of a given iterative interpolation process.
引用
收藏
页码:297 / 312
页数:16
相关论文
共 14 条
[1]  
DAUBECHIES I, IN PRESS SIAM J MATH
[2]   SYMMETRIC ITERATIVE INTERPOLATION PROCESSES [J].
DESLAURIERS, G ;
DUBUC, S .
CONSTRUCTIVE APPROXIMATION, 1989, 5 (01) :49-68
[3]  
DESLAURIERS G, 1987, ANN SC MATH QUEBEC, V11, P25
[4]  
DESLAURIERS G, 1987, FRACTALS DIMENSIONS, P44
[5]   INTERPOLATION THROUGH AN ITERATIVE SCHEME [J].
DUBUC, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 114 (01) :185-204
[6]  
Dyn N., 1987, Computer-Aided Geometric Design, V4, P257, DOI 10.1016/0167-8396(87)90001-X
[7]  
DYN N, IN PRESS CONSTRUCTIV
[8]   THE HAUSDORFF DIMENSION OF SELF-AFFINE FRACTALS [J].
FALCONER, KJ .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1988, 103 :339-350
[9]  
HENRICI P, 1964, ELEMENTS NUMERICAL A
[10]  
Kono N, 1986, JPN J APPL MATH, V3, P259