PERIODIC AND QUASI-PERIODIC SOLUTIONS OF DEGENERATE MODULATION EQUATIONS

被引:53
作者
DOELMAN, A
ECKHAUS, W
机构
[1] Mathematisch Instituut, Rijksuniversiteit Utrecht, 3508 TA Utrecht
来源
PHYSICA D | 1991年 / 53卷 / 2-4期
关键词
D O I
10.1016/0167-2789(91)90065-H
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In some circumstances (degenerations) it is essential to add higher-order nonlinear coefficients to a Ginzburg-Landau type modulation equation (which only has one cubic nonlinearity). In this paper we study these degenerate modulation equations. We consider the important situation in which the equation has real coefficients and the case of coefficients with small imaginary parts. First we determine the stability of periodic solutions. The stationary problem is, like in the non-degenerate case, integrable: there exist families of quasi-periodic and homoclinic solutions. This system is perturbed by considering modulation equations with coefficients with small imaginary parts. We establish that there exists an unbounded domain in parameter space in which the modulation equation has quasi-periodic solutions. Moreover, we show that there is a manifold of codimension 1 (in parameter space) on which the homoclinic solutions survive the perturbation.
引用
收藏
页码:249 / 266
页数:18
相关论文
共 19 条
[1]   BENJAMIN-FEIR TURBULENCE IN CONVECTIVE BINARY FLUID MIXTURES [J].
BRAND, HR ;
LOMDAHL, PS ;
NEWELL, AC .
PHYSICA D, 1986, 23 (1-3) :345-361
[2]  
DiPrima R. C., 1971, Instability of continuous systems, P55
[3]   NON-LINEAR WAVE-NUMBER INTERACTION IN NEAR-CRITICAL 2-DIMENSIONAL FLOWS [J].
DIPRIMA, RC ;
ECKHAUS, W ;
SEGEL, LA .
JOURNAL OF FLUID MECHANICS, 1971, 49 (OCT29) :705-&
[4]   SLOW TIME-PERIODIC SOLUTIONS OF THE GINZBURG-LANDAU EQUATION [J].
DOELMAN, A .
PHYSICA D-NONLINEAR PHENOMENA, 1989, 40 (02) :156-172
[5]  
DOELMAN A, 1990, THESIS RIJKSUNIVERST
[6]  
EAGLES MP, 1973, J FLUID MECH, V57, P149
[7]   STRONG SELECTION OR REJECTION OF SPATIALLY PERIODIC PATTERNS IN DEGENERATE BIFURCATIONS [J].
ECKHAUS, W ;
IOOSS, G .
PHYSICA D, 1989, 39 (01) :124-146
[8]  
Guckenheimer J., 2013, APPL MATH SCI, DOI 10.1007/978-1-4612- 1140-2
[9]  
HIRSCH M, 1977, SPRINGER LECTURE NOT, V583
[10]   SPATIAL STRUCTURE OF TIME-PERIODIC SOLUTIONS OF THE GINZBURG-LANDAU EQUATION [J].
HOLMES, P .
PHYSICA D-NONLINEAR PHENOMENA, 1986, 23 (1-3) :84-90