A VECTORIZABLE RANDOM LATTICE

被引:65
作者
MOUKARZEL, C
HERRMANN, HJ
机构
关键词
RANDOM LATTICES; VECTOR ALGORITHMS;
D O I
10.1007/BF01048880
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe a family of random lattices in which the connectivity is determined by the Voronoi construction while the vectorizability is not lost. We can continuously vary the degree of randomness so in a certain limit a regular lattice is recovered. Several statistical properties of the cells and bonds of these lattices are measured. We also study anisotropy effects on the numerical solution of the Laplace equation for varying degrees of randomness.
引用
收藏
页码:911 / 923
页数:13
相关论文
共 8 条
[1]   RANDOM LATTICE FIELD-THEORY - GENERAL FORMULATION [J].
CHRIST, NH ;
FRIEDBERG, R ;
LEE, TD .
NUCLEAR PHYSICS B, 1982, 202 (01) :89-125
[2]  
COLLINS R, 1972, PHASE TRANSITIONS CR, P275
[3]   FIELD-THEORY ON A COMPUTATIONALLY CONSTRUCTED RANDOM LATTICE [J].
FRIEDBERG, R ;
REN, HC .
NUCLEAR PHYSICS B, 1984, 235 (03) :310-320
[4]   MONTE-CARLO ESTIMATES OF THE DISTRIBUTIONS OF THE RANDOM POLYGONS OF THE VORONOI TESSELLATION WITH RESPECT TO A POISSON-PROCESS [J].
HINDE, AL ;
MILES, RE .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1980, 10 (3-4) :205-223
[5]  
ITZYKSON C, 1983, PROGR GAUGE FIELD TH
[6]  
NITTMANN J, 1986, NATURE, V321, P633
[7]   MONTE-CARLO APPROACH TO DENDRITIC GROWTH [J].
SZEP, J ;
CSERTI, J ;
KERTESZ, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (08) :L413-L418
[8]   DIFFUSION-LIMITED AGGREGATION AND THE SAFFMAN-TAYLOR PROBLEM [J].
TANG, C .
PHYSICAL REVIEW A, 1985, 31 (03) :1977-1979