EIGENVECTORS IN BOTTLENECK ALGEBRA

被引:44
作者
CECHLAROVA, K
机构
[1] Department of Geometry, Algebra Faculty, Sciences P. J. Safárik University Jesenná 5
关键词
D O I
10.1016/0024-3795(92)90302-Q
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (B, less-than-or-equal-to) be a nonempty, linearly ordered set without maximum and minimum, and (+, x) = (max, min). A vector x is said to be an eigenvector of a square matrix A if A x x = x. The aim of the present paper is to characterize the eigenvectors by means of the associated graph of the matrix and to give bounds for the set of all eigenvectors. We define the lower and the upper basic eigenvectors and derive efficient methods for computing them.
引用
收藏
页码:63 / 73
页数:11
相关论文
共 8 条
[1]   STRONG LINEAR INDEPENDENCE IN BOTTLENECK ALGEBRA [J].
BUTKOVIC, P ;
CECHLAROVA, K ;
SZABO, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 94 :133-155
[2]  
CUNINGHAMEGREEN RA, 1979, LECTURE NOTES EC MAT, V166
[3]  
CUNINGHAMEGREEN RA, 1960, 2ND P INT C OP RES, P323
[4]  
GONDRAN M, 1976, REV FR AUTOMAT INFOR, V10, P39
[5]  
GONDRAN M, 1978, C INT CNRS PAR, P181
[6]  
Vorob'ev N. N., 1970, Elektronische Informationsverarbeitung und Kybernetik (EIK), V6, P303
[7]  
Vorobyev N, 1967, ELEKT INFORMATIONSVE, V3, P39
[8]  
Zimmermann U., 1981, Linear and combinatorial optimization in ordered algebraic structures