THE ENTROPY OF A RANDOMLY STOPPED SEQUENCE

被引:10
作者
EKROOT, L [1 ]
COVER, TM [1 ]
机构
[1] STANFORD UNIV,DEPT STAT,STANFORD,CA 94305
基金
美国国家科学基金会;
关键词
ENTROPY; STOPPING TIME; WALD EQUATION; STOPPED SEQUENCES;
D O I
10.1109/18.104324
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A Wald-like equation is proved for the entropy of a randomly stopped sequence of independent identically distributed discrete random variables X1, X2, ... with a nonanticipating stopping time N. Specifically, it is shown that H(X(N)) = (EN)H(X1) + H(N\X infinity), where X(N) denotes the randomly stopped sequence. Thus, the randomness in the stopped sequence X(N) is the expected number of "calls" for X times the entropy per call plus the residual randomness in the stopping time conditioned on the unstopped sequence X infinity.
引用
收藏
页码:1641 / 1644
页数:4
相关论文
共 8 条
[1]  
Ahlswede R., 1971, Advances in Applied Probability, V3, P383, DOI 10.2307/1426177
[2]  
Billingsley P., 1985, PROBABILITY MEASURE
[3]  
Brown James R, 1976, ERGODIC THEORY TOPOL
[4]  
Chow YS, 1971, GREAT EXPECTATIONS T
[5]  
Dobrushin R. L., 1967, PROBL PEREDACHI INF, V3, P18
[6]  
EKROOT L, 1991, UNPUB IEEE T INFORM
[7]  
KARLIN S, 1975, 1ST COURSE STOCHASTI
[8]  
MASSEY JL, 1983, IEEE INT S INFORM TH