EXTREMELY SIMPLE NONLINEAR NOISE-REDUCTION METHOD

被引:179
作者
SCHREIBER, T [1 ]
机构
[1] UNIV GESAMTHSCH WUPPERTAL,DEPT PHYS,W-5600 WUPPERTAL 1,GERMANY
来源
PHYSICAL REVIEW E | 1993年 / 47卷 / 04期
关键词
D O I
10.1103/PhysRevE.47.2401
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A very simple method to reduce noise in experimental data with nonlinear time evolution is presented. Locally constant fits are used to obtain a less noisy trajectory consistent with the dynamics as well as with the measured data. Neighborhoods are defined by coordinates both from the past and from the future. The method is applied to the Henon map and to a discretized form of the Mackey-Glass equation.
引用
收藏
页码:2401 / 2404
页数:4
相关论文
共 16 条
[1]   LOCAL-GEOMETRIC-PROJECTION METHOD FOR NOISE-REDUCTION IN CHAOTIC MAPS AND FLOWS [J].
CAWLEY, R ;
HSU, GH .
PHYSICAL REVIEW A, 1992, 46 (06) :3057-3082
[2]   Optimal shadowing and noise reduction [J].
Farmer, J.D. ;
Sidorowich, J.J. .
Physica D: Nonlinear Phenomena, 1991, 47 (03) :373-392
[3]   AN OPTIMIZED BOX-ASSISTED ALGORITHM FOR FRACTAL DIMENSIONS [J].
GRASSBERGER, P .
PHYSICS LETTERS A, 1990, 148 (1-2) :63-68
[4]   ESTIMATION OF THE KOLMOGOROV-ENTROPY FROM A CHAOTIC SIGNAL [J].
GRASSBERGER, P ;
PROCACCIA, I .
PHYSICAL REVIEW A, 1983, 28 (04) :2591-2593
[5]  
GRASSBERGER P, IN PRESS CHAOS
[6]  
GRASSBERGER P, 1991, J BIFURCAT CHAOS, V1, P521
[7]   A NOISE-REDUCTION METHOD FOR CHAOTIC SYSTEMS [J].
HAMMEL, SM .
PHYSICS LETTERS A, 1990, 148 (8-9) :421-428
[8]  
HENON M, 1976, COMMUN MATH PHYS, V50, P169
[9]  
KANTZ H, 1993, IN PRESS PREDICTING
[10]   NOISE-REDUCTION IN DYNAMICAL-SYSTEMS [J].
KOSTELICH, EJ ;
YORKE, JA .
PHYSICAL REVIEW A, 1988, 38 (03) :1649-1652