QUANTITATIVE THEORY OF RICHTMYER-MESHKOV INSTABILITY

被引:68
作者
GROVE, JW [1 ]
HOLMES, R [1 ]
SHARP, DH [1 ]
YANG, Y [1 ]
ZHANG, Q [1 ]
机构
[1] LOS ALAMOS NATL LAB, DIV THEORET, COMPLEX SYST GRP, LOS ALAMOS, NM 87545 USA
关键词
D O I
10.1103/PhysRevLett.71.3473
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The acceleration of a material interface by a shock wave generates an interface instability known as the Richtmyer-Meshkov instability. Previous attempts to model the growth rate of the instability have produced values that are almost twice that of the experimental measurements. This Letter presents numerical simulations using front tracking that for the first time are in quantitative agreement with experiments of a shocked air-SF6 interface. Moreover, the failure of the impulsive model, and the linear theory from which it is derived, to model experiments correctly is understood in terms of time limits on the validity of the linear model.
引用
收藏
页码:3473 / 3476
页数:4
相关论文
共 17 条
[1]  
Aleshin A. N., 1988, Soviet Technical Physics Letters, V14, P466
[2]   HIGHER-ORDER GODUNOV METHODS FOR GENERAL SYSTEMS OF HYPERBOLIC CONSERVATION-LAWS [J].
BELL, JB ;
COLELLA, P ;
TRANGENSTEIN, JA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 82 (02) :362-397
[3]  
BENJAMIN R, 1993, LANL LAUR921185 LOS
[4]  
Benjamin R. F., 1992, ADV COMPRESSIBLE TUR, P341
[5]  
CHERN IL, 1986, J COMPUT PHYS, V62, P83, DOI 10.1016/0021-9991(86)90101-4
[6]   NUMERICAL-SIMULATION OF RICHTMYER-MESHKOV INSTABILITIES [J].
CLOUTMAN, LD ;
WEHNER, MF .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1992, 4 (08) :1821-1830
[7]   RAYLEIGH-TAYLOR STABILITY FOR A NORMAL SHOCK-WAVE DENSITY DISCONTINUITY INTERACTION [J].
FRALEY, G .
PHYSICS OF FLUIDS, 1986, 29 (02) :376-386
[8]  
GROVE J, IN PRESS
[9]  
Meshkov E. E., 1988, ADV COMPRESSIBLE TUR, P473
[10]  
Meshkov E. E., 1970, TTF13 NASA, P74