IMPLEMENTATION OF SELF-ORGANIZING NEURAL NETWORKS FOR VISUO-MOTOR CONTROL OF AN INDUSTRIAL ROBOT

被引:96
作者
WALTER, JA
SCHULTEN, KJ
机构
[1] UNIV ILLINOIS,BECKMAN INST,URBANA,IL 61801
[2] UNIV ILLINOIS,DEPT PHYS,URBANA,IL 61801
[3] UNIV ILLINOIS,NATL INST HLTH RESOURCE,URBANA,IL 61801
[4] UNIV ILLINOIS,NATL INST CONCURRENT BIOL COMP,URBANA,IL 61801
[5] UNIV BIELEFELD,DEPT INFORMAT SCI,W-4800 BIELEFELD,GERMANY
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 1993年 / 4卷 / 01期
基金
美国国家科学基金会;
关键词
D O I
10.1109/72.182698
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We report on the implementation of two neural network algorithms for visuo-motor control of an industrial robot (Puma 562). The first algorithm uses a vector quantization technique, the ''neural-gas'' network, together with an error correction scheme based on a Widrow-Hoff-type learning rule. The second algorithm employs an extended self-organizing feature map algorithm. Based on visual information provided by two cameras, the robot learns to position its end effector without an external teacher. Within only 3000 training steps, the robot-camera system is capable of reducing the positioning error of the robot's end effector to approximately 0.1% of the linear dimension of the work space. By employing adaptive feedback the robot succeeds in compensating not only slow calibration drifts, but also sudden changes in its geometry. Hardware aspects of the robot-camera system are discussed.
引用
收藏
页码:86 / 95
页数:10
相关论文
共 20 条
[1]  
CRAIG J, 1986, INTRO ROBOTICS
[2]  
ECKMILLER R, 1989, IJCNN, V2, P333
[3]  
Kangas J A, 1990, IEEE Trans Neural Netw, V1, P93, DOI 10.1109/72.80208
[4]   SELF-ORGANIZED FORMATION OF TOPOLOGICALLY CORRECT FEATURE MAPS [J].
KOHONEN, T .
BIOLOGICAL CYBERNETICS, 1982, 43 (01) :59-69
[5]  
Kohonen T., 1984, SELF ORG ASSOCIATIVE, V8
[6]  
KUPERSTEIN M, 1988, SCIENCE, V239, P1301
[7]  
KUPERSTEIN M, 1987, IEEE INT AUTOMAT ROB, P1596
[8]  
LLOYD J, 1988, IEEE C ROBOTICS AUTO, P465
[9]  
MARTINETZ T, 1990, PARALLEL PROCESSING IN NEURAL SYSTEMS AND COMPUTERS, P431
[10]  
MARTINETZ T, 1992, UNPUB NEURAL GAS NET