CLASSIFICATION OF PSEUDO-CYCLIC MDS CODES

被引:27
作者
PEDERSEN, JP
DAHL, C
机构
[1] Mathematical Institute, Technical University of Denmark, DK-2800, Lyngby
关键词
MAXIMUM DISTANCE SEPARABLE CODES; PSEUDO-CYCLIC CODES; GENERALIZED REED-SOLOMON CODES;
D O I
10.1109/18.75254
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It is explicitly proven that some classes of pseudo-cyclic [n,k] MDS codes over GF(q) are generalized Reed-Solomon codes. Furthermore, pseudo-cyclic [q + 1,4] MDS codes over GF(q), q even, are completely classified.
引用
收藏
页码:365 / 370
页数:6
相关论文
共 14 条
[1]  
BERLEKAMP ER, 1968, ALGEBRAIC CODING THE
[2]  
Casse LRA., 1982, GEOMETRIAE DEDICATA, V13, P157, DOI [10.1007/BF00147659, DOI 10.1007/BF00147659, 10.1007/BF00147659 0503.51011, DOI 10.1007/BF001476590503.51011]
[3]  
DAHL C, IN PRESS J COMB TH A
[4]   MAXIMUM DISTANCE SEPARABLE MULTILEVEL CODES [J].
DAROCHA, VC .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1984, 30 (03) :547-548
[6]   THE NONCLASSICAL 10-ARC OF PG(4,9) [J].
GLYNN, DG .
DISCRETE MATHEMATICS, 1986, 59 (1-2) :43-51
[7]  
HIRSCHFELD H, 1975, ANN MAT PUR APPL, V102, P79
[8]   PSEUDOCYCLIC MAXIMUM-DISTANCE-SEPARABLE CODES [J].
KRISHNA, A ;
SARWATE, DV .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (04) :880-884
[9]  
MACWILLIAMS FJ, 1987, J COMB THEORY A, V44, P69
[10]   ON CYCLIC MDS CODES OF LENGTH Q OVER GF(Q) [J].
ROTH, RM ;
SEROUSSI, G .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1986, 32 (02) :284-285