ON P-ABSOLUTELY SUMMING CONSTANTS OF BANACH SPACES

被引:28
作者
GORDON, Y
机构
关键词
D O I
10.1007/BF02771662
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given 1≦p<∞ and a real Banach space X, we define the p-absolutely summing constant μ p(X) as inf{Σ i =1/m |x*(x i)|p p Σ i =1/m {norm of matrix}x i{norm of matrix}p p]1 p}, where the supremum ranges over {x*∈X*; {norm of matrix}x*{norm of matrix}≤1} and the infimum is taken over all sets {x 1, x 2, ..., x m} ⊂X such that Σ i =1/m {norm of matrix}x i{norm of matrix}>0. It follows immediately from [2] that μ p(X)>0 if and only if X is finite dimensional. In this paper we find the exact values of μ p(X) for various spaces, and obtain some asymptotic estimates of μ p(X) for general finite dimensional Banach spaces. © 1969 Hebrew University.
引用
收藏
页码:151 / &
相关论文
共 7 条
[1]  
DAY MM, 1958, NORMED LINEAR SPACES
[2]   ABSOLUTE AND UNCONDITIONAL CONVERGENCE IN NORMED LINEAR SPACES [J].
DVORETZKY, A ;
ROGERS, CA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1950, 36 (03) :192-197
[3]  
Fritz John, 1948, STUDIEESSAYPRESE, P187
[4]   ON PROJECTION AND MACPHAIL CONSTANTS OF LP/N SPACES [J].
GORDON, Y .
ISRAEL JOURNAL OF MATHEMATICS, 1968, 6 (03) :295-&
[5]  
GRUNBAUM B, 1960, T AM MATH SOC, V95, P451
[6]   ABSOLUTELY SUMMING OPERATORS IN LP-SPACES AND THEIR APPLICATIONS [J].
LINDENST.J ;
PELCZYNS.A .
STUDIA MATHEMATICA, 1968, 29 (03) :275-&
[7]   ABSOLUT P-SUMMIERENDE ABBILDUNGEN IN NORMIERTEN RAUMEN [J].
PIETSCH, A .
STUDIA MATHEMATICA, 1967, 28 (03) :333-&