A GENERALIZED COROLLARY OF BROWDER-KIRK FIXED POINT THEOREM

被引:6
作者
DOTSON, WG
MANN, WR
机构
[1] North Carolina State University, University Of North Carolina, Chapel Hill
关键词
D O I
10.2140/pjm.1968.26.455
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper generalizes a corollary, due to W. A. Kirk, of the F. E. Browder-W. A. Kirk fixed point theorem for nonexpansive self-mappings of closed, bounded, convex setsin uniformly convex Banach spaces. © 1968 by Pacific Journal of Mathematics.
引用
收藏
页码:455 / &
相关论文
共 6 条
[1]   SOLUTION BY ITERATION OF NONLINEAR FUNCTIONAL EQUATIONS IN BANACH SPACES [J].
BROWDER, FE ;
PETRYSHYN, WV .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 72 (03) :571-+
[3]   FIXED POINTS OF NONEXPANDING MAPS [J].
HALPERN, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (06) :957-&
[4]   A FIXED POINT THEOREM FOR MAPPINGS WHICH DO NOT INCREASE DISTANCES [J].
KIRK, WA .
AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (09) :1004-&
[5]   MEAN VALUE METHODS IN ITERATION [J].
MANN, WR .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 4 (03) :506-510
[6]  
OUTLAW CL, 1968, AMER MATH SOC, V15, P180