DISTRIBUTION-THEORY FOR THE ANALYSIS OF BINARY CHOICE UNDER UNCERTAINTY WITH NONPARAMETRIC-ESTIMATION OF EXPECTATIONS

被引:26
作者
AHN, HT
MANSKI, CF
机构
[1] UNIV WISCONSIN,DEPT ECON,1180 OBSERV DR,MADISON,WI 53706
[2] VIRGINIA POLYTECH INST & STATE UNIV,BLACKSBURG,VA 24061
基金
美国国家科学基金会;
关键词
D O I
10.1016/0304-4076(93)90123-M
中图分类号
F [经济];
学科分类号
02 ;
摘要
In analyzing discrete choice under uncertainty, the practice has been to specify expectations and preferences up to a finite-dimensional parameter. Recently, Manski proved the consistency of a two-stage, semiparametric estimator applicable if expectations are fulfilled and are conditioned only on variables observed by the researcher. The first stage estimates expectations nonparametrically, and the second stage uses choice data and the expectations estimate to make parametric, quasi-maximum-likelihood inference on preferences. This paper proves that the estimate of preference parameters converges at rate square-root N to a limiting normal distribution if the expectations estimate is chosen appropriately. The estimate is square-root N-asymptotically unbiased. Its asymptotic variance exceeds the inverted Fisher information for the preference parameter.
引用
收藏
页码:291 / 321
页数:31
相关论文
共 15 条