A FAMILY OF ONE-DIMENSIONAL OXIDES - SR(3)MIRO(6) (M=NI, CU, ZU) - STRUCTURE AND MAGNETIC-PROPERTIES

被引:116
作者
NGUYEN, TN [1 ]
ZURLOYE, HC [1 ]
机构
[1] MIT, DEPT CHEM, CAMBRIDGE, MA 02139 USA
关键词
D O I
10.1006/jssc.1995.1277
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The structures and magnetic properties of Sr3ZnIrO6, Sr3CuIrO6, and Sr3NiIrO6 are presented. The structure of Sr3NiIrO6 was solved by Rietveld analysis of powder neutron data. The structure refined in space group R $($) over bar$$ 3c, with a = 9.5806(1) and c = 11.1315(2) Angstrom. The structure consists of infinite chains of alternating IrO6 octahedra and NiO6 trigonal prisms. The structures of Sr3ZnIrO6 and Sr3CuIrO6 are closely related to that of Sr3NiIrO6. Magnetic susceptibility studies show that Sr3NiIrO6 undergoes complex magnetic transitions as a function of temperature and achieves a singlet ground state below 15 K. Low-temperature neutron diffraction does not show any evidence for structural changes. Magnetic susceptibility measurements of Sr3CuIrO6 display ferromagnetic ordering below 40 K. Measurements of the saturation magnetization at applied fields of up to 20 T display virtually no hysteresis loop, indicating that Sr3CuIrO6 is a very soft ferromagnet. The saturation magnetization of 0.61 mu(B) is lower than that expected for two unpaired electrons. Sr3ZnIrO6 orders antiferromagnetically. The data were fit to an alternating-chain Heisenberg model. The structures and magnetic properties of these one-dimensional oxides are discussed. (C) 1995 Academic Press, Inc.
引用
收藏
页码:300 / 308
页数:9
相关论文
共 27 条
[1]  
[Anonymous], 1962, PHYS REV, DOI DOI 10.1103/PHYSREV.128.2131
[2]   ALTERNATING LINEAR-CHAIN ANTIFERROMAGNETISM IN COPPER NITRATE CU(NO3)2.2.5H2O [J].
BONNER, JC ;
FRIEDBERG, SA ;
KOBAYASHI, H ;
MEIER, DL ;
BLOTE, HWJ .
PHYSICAL REVIEW B, 1983, 27 (01) :248-260
[3]  
BONNER JC, 1964, PHYS REV A, V135, P640
[4]  
Carlin R. L., 1986, MAGNETOCHEMISTRY
[5]  
CARLIN RL, 1986, MAGNETOCHEMISTRY, P163
[6]   THE COMPOUND Y2BANIO5 - A NEW EXAMPLE OF A HALDANE-GAP IN A S = 1 MAGNETIC CHAIN [J].
DARRIET, J ;
REGNAULT, LP .
SOLID STATE COMMUNICATIONS, 1993, 86 (07) :409-412
[7]   THEORETICAL AND EXPERIMENTAL-STUDY OF THE MAGNETIC-PROPERTIES OF THE SINGLET-GROUND-STATE SYSTEM CU(NO3)2.2.5H2O - ALTERNATING LINEAR HEISENBERG ANTI-FERROMAGNET [J].
DIEDERIX, KM ;
BLOTE, HWJ ;
GROEN, JP ;
KLAASSEN, TO ;
POULIS, NJ .
PHYSICAL REVIEW B, 1979, 19 (01) :420-431
[8]   THEORY OF ALTERNATING ANTIFERROMAGNETIC HEISENBERG LINEAR CHAINS [J].
DUFFY, W ;
BARR, KP .
PHYSICAL REVIEW, 1968, 165 (02) :647-+
[9]   RANDOM EXCHANGE HEISENBERG CHAIN FOR CLASSICAL AND QUANTUM SPINS [J].
FURUSAKI, A ;
SIGRIST, M ;
LEE, PA ;
TANAKA, K ;
NAGAOSA, N .
PHYSICAL REVIEW LETTERS, 1994, 73 (19) :2622-2625
[10]   STRUCTURAL AND MAGNETIC-PROPERTIES OF (CH3)4NNI(NO2)3 - A HALDANE-GAP SYSTEM [J].
GADET, V ;
VERDAGUER, M ;
BRIOIS, V ;
GLEIZES, A ;
RENARD, JP ;
BEAUVILLAIN, P ;
CHAPPERT, C ;
GOTO, T ;
LEDANG, K ;
VEILLET, P .
PHYSICAL REVIEW B, 1991, 44 (02) :705-712