ELECTRON-MICROSCOPY OF THE GROEL-GROES FILAMENT

被引:9
作者
HARRIS, JR
ZAHN, R
PLUCKTHUN, A
机构
[1] MAX PLANCK INST BIOCHEM,W-8033 MARTINSRIED,GERMANY
[2] UNIV ZURICH,INST BIOCHEM,CH-8057 ZURICH,SWITZERLAND
关键词
D O I
10.1006/jsbi.1995.1031
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Electron microscopy of a filamentous complex of GroEL and GroES has been performed on negatively stained specimens. The filaments have been formed when GroEL and GroES at relatively low molar ratios (e.g., 1:1 to 1:3) are incubated at room temperature in the presence of magnesium and ATP. At higher molar ratio, the symmetrical GroEL-GroES complex predominates. Within the GroEL-GroES filaments, the same structural rearrangements of GroEL were observed as in the ''bulletshaped'' or symmetrical GroEL-GroES complexes. In the absence of GroES, GroEL molecules have no tendency to form linear filaments, The sharing of one GroES by two GroEL molecules might indicate a high plasticity of the GroEL-GroES complex. Preliminary Fourier analysis of filaments of increasing length indicates that they possess an inherent helicity. Using the negative staining-carbon film procedure, two-dimensional (2-D) crystal nucleation induced by ammonium molybdate-polyethylene glycol can create undulatory rows of side-on GroEL molecules, which are able extend as a p2 2-D crystal form, readily distinguishable from the filamentous GroEL-GroES aggregates. Crystallographic image processing indicates that the GroEL 2 x 7-mer itself possesses a dyad screw axis, in accord with existing higher resolution X-ray structure data. (C) 1995 Academic Press, Inc.
引用
收藏
页码:68 / 77
页数:10
相关论文
共 49 条
  • [1] CHARACTERIZATION OF A FUNCTIONAL GROEL(14)(GROES(7))(2) CHAPERONIN HETERO-OLIGOMER
    AZEM, A
    KESSEL, M
    GOLOUBINOFF, P
    [J]. SCIENCE, 1994, 265 (5172) : 653 - 656
  • [2] BEGAUER W, 1994, ZOOLOGY, V98, P51
  • [3] THE CRYSTAL-STRUCTURE OF THE BACTERIAL CHAPERONIN GROEL AT 2.8-ANGSTROM
    BRAIG, K
    OTWINOWSKI, Z
    HEGDE, R
    BOISVERT, DC
    JOACHIMIAK, A
    HORWICH, AL
    SIGLER, PB
    [J]. NATURE, 1994, 371 (6498) : 578 - 586
  • [4] GROE FACILITATES REFOLDING OF CITRATE SYNTHASE BY SUPPRESSING AGGREGATION
    BUCHNER, J
    SCHMIDT, M
    FUCHS, M
    JAENICKE, R
    RUDOLPH, R
    SCHMID, FX
    KIEFHABER, T
    [J]. BIOCHEMISTRY, 1991, 30 (06) : 1586 - 1591
  • [5] LOCALIZATION OF THE BINDING-SITE OF AN ANTIBODY AFFECTING ATPASE ACTIVITY OF CHAPERONIN CPN60 FROM BORDETELLA-PERTUSSIS
    CEJKA, Z
    GOULDKOSTKA, J
    BURNS, D
    KESSEL, M
    [J]. JOURNAL OF STRUCTURAL BIOLOGY, 1993, 111 (01) : 34 - 38
  • [6] CHANDRASEKHAR GN, 1986, J BIOL CHEM, V261, P2414
  • [7] LOCATION OF A FOLDING PROTEIN AND SHAPE CHANGES IN GROEL-GROES COMPLEXES IMAGED BY CRYOELECTRON MICROSCOPY
    CHEN, S
    ROSEMAN, AM
    HUNTER, AS
    WOOD, SP
    BURSTON, SG
    RANSON, NA
    CLARKE, AR
    SAIBIL, HR
    [J]. NATURE, 1994, 371 (6494) : 261 - 264
  • [8] COUTURETOSI E, 1986, EUR J CELL BIOL, V42, P359
  • [9] RESIDUES IN CHAPERONIN GROEL REQUIRED FOR POLYPEPTIDE BINDING AND RELEASE
    FENTON, WA
    KASHI, Y
    FURTAK, K
    HORWICH, AL
    [J]. NATURE, 1994, 371 (6498) : 614 - 619
  • [10] FREY TG, 1978, 9TH P INT C EL MICR, V3, P107