ON THE PERFORMANCE OF BOX-COUNTING ESTIMATORS OF FRACTAL DIMENSION

被引:36
作者
HALL, P
WOOD, A
机构
关键词
BIAS; BOX-COUNTING; CONVERGENCE RATE; FRACTAL DIMENSION; GAUSSIAN PROCESS; HAUSDORFF DIMENSION; REGRESSION;
D O I
10.2307/2336774
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Box-counting estimators are popular for estimating fractal dimension. However, very little is known of their stochastic properties, despite increasing statistical interest in their application. We show that, if the irregular curve to which the estimators are applied is modelled by a Gaussian process, concise formulae may be developed for asymptotic bias and variance of box-counting estimators. These formulae point to critical differences between a naive form of the box-counting estimator, based directly on the capacity definition of fractal dimension, and a regression-inspired version of that estimator.
引用
收藏
页码:246 / 252
页数:7
相关论文
共 10 条
  • [1] Adler RJ., 1981, GEOMETRY RANDOM FIEL
  • [2] Barnsley MF., 2014, FRACTALS EVERYWHERE
  • [3] CARTER PH, 1988, FRACTAL ASPECTS MATE, P183
  • [4] ERROR ANALYSIS AND CONVERGENCE OF CAPACITY DIMENSION ALGORITHMS
    HUNT, F
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (01) : 307 - 321
  • [5] FRACTAL CHARACTER OF FRACTURE SURFACES OF METALS
    MANDELBROT, BB
    PASSOJA, DE
    PAULLAY, AJ
    [J]. NATURE, 1984, 308 (5961) : 721 - 722
  • [6] OGATA Y, 1991, BIOMETRIKA, V78, P463
  • [7] ROSENBLATT M, 1961, 4TH P BERK S MATH ST, P411
  • [8] Sullivan F., 1988, Nuclear Physics B, Proceedings Supplements, V5A, P125, DOI 10.1016/0920-5632(88)90026-6
  • [9] WEAK CONVERGENCE TO FRACTIONAL BROWNIAN-MOTION AND TO ROSENBLATT PROCESS
    TAQQU, MS
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1975, 31 (04): : 287 - 302
  • [10] TAYLOR CC, 1991, J ROY STAT SOC B MET, V53, P353