THE ADJOINT ARC IN NONSMOOTH OPTIMIZATION

被引:47
作者
LOEWEN, PD [1 ]
ROCKAFELLAR, RT [1 ]
机构
[1] UNIV WASHINGTON,DEPT MATH,SEATTLE,WA 98195
关键词
D O I
10.2307/2001658
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the theory of necessary conditions for nonsmooth problems of Bolza in three ways: first, we incorporate state constraints of the intrinsic type x(t) is-an-element-of X(t) for all t; second, we make no assumption of calmness or normality; and third, we show that a single adjoint function of bounded variation simultaneously satisfies the Hamiltonian inclusion, the Euler-Lagrange inclusion, and the Weierstrass-Pontryagin maximum condition, along with the usual transversality relations.
引用
收藏
页码:39 / 72
页数:34
相关论文
共 19 条
[1]  
AUBIN JP, 1984, APPLIED NONLINEAR AN
[2]  
Clarke F.H., 1983, OPTIMIZATION NONSMOO
[3]   EXTREMAL ARCS AND EXTENDED HAMILTONIAN SYSTEMS [J].
CLARKE, FH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 231 (02) :349-367
[4]   GENERALIZED PROBLEM OF BOLZA [J].
CLARKE, FH .
SIAM JOURNAL ON CONTROL, 1976, 14 (04) :682-699
[5]   OPTIMAL SOLUTIONS TO DIFFERENTIAL INCLUSIONS [J].
CLARKE, FH .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1976, 19 (03) :469-478
[7]   THE PROXIMAL NORMAL FORMULA IN HILBERT-SPACE [J].
LOEWEN, PD .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1987, 11 (09) :979-995
[8]   DIFFERENTIAL-INCLUSIONS WITH FREE TIME [J].
LOEWEN, PD ;
CLARKE, FH ;
VINTER, RB .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1988, 5 (06) :573-593
[9]  
RAISSI N, 1987, THESIS U MONTREAL
[10]  
Rockafellar R. T., 1981, Game Theory and Mathematical Economics. Proceedings of the Seminar, P339