MACROMOLECULAR DIFFERENTIATION OF GOLGI STACKS IN ROOT-TIPS OF ARABIDOPSIS AND NICOTIANA SEEDLINGS AS VISUALIZED IN HIGH-PRESSURE FROZEN AND FREEZE-SUBSTITUTED SAMPLES

被引:149
作者
STAEHELIN, LA [1 ]
GIDDINGS, TH [1 ]
KISS, JZ [1 ]
SACK, FD [1 ]
机构
[1] OHIO STATE UNIV, DEPT BOT, COLUMBUS, OH 43210 USA
关键词
Cryofixation; Golgi; Root cap; Secretion; Slime;
D O I
10.1007/BF01322640
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The plant root tip represents a fascinating model system for studying changes in Golgi stack architecture associated with the developmental progression of meristematic cells to gravity sensing columella cells, and finally to "young" and "old", polysaccharideslime secreting peripheral cells. To this end we have used high pressure freezing in conjunction with freeze-substitution techniques to follow developmental changes in the macromolecular organization of Golgi stacks in root tips of Arabidopsis and Nicotiana. Due to the much improved structural preservation of all cells under investigation, our electron micrographs reveal both several novel structural features common to all Golgi stacks, as well as characteristic differences in morphology between Golgi stacks of different cell types. Common to all Golgi stacks are clear and discrete differences in staining patterns and width of cis, medial and trans cisternae. Cis cisternae have the widest lumina (∼30 nm) and are the least stained. Medial cisternae are narrower (∼20 nm) and filled with more darkly staining products. Most trans cisternae possess a completely collapsed lumen in their central domain, giving rise to a 4-6 nm wide dark line in cross-sectional views. Numerous vesicles associated with the cisternal margins carry a non-clathrin type of coat. A trans Golgi network with clathrin coated vesicles is associated with all Golgi stacks except those of old peripheral cells. It is easily distinguished from trans cisternae by its blebbing morphology and staining pattern. The zone of ribosome exclusion includes both the Golgi stack and the trans Golgi network. Intercisternal elements are located exclusively between trans cisternae of columella and peripheral cells, but not meristematic cells. In older peripheral cells only trans cisternae exhibit slime-related staining. Golgi stacks possessing intercisternal elements also contain parallel rows of freeze-fracture particles in their trans cisternal membranes. We propose that intercisternal elements serve as anchors of enzyme complexes involved in the synthesis of polysaccharide slime molecules to prevent the complexes from being dragged into the forming secretory vesicles by the very large slime molecules. In addition, we draw attention to the similarities in composition and apparent site of synthesis of xyloglucans and slime molecules. © 1990 Springer-Verlag.
引用
收藏
页码:75 / 91
页数:17
相关论文
共 67 条
[1]  
ALI MS, 1986, PLANT PHYSIOL, V81, P222, DOI 10.1104/pp.81.1.222
[2]   VESICLES AND CISTERNAE IN THE TRANS GOLGI-APPARATUS OF HUMAN-FIBROBLASTS ARE ACIDIC COMPARTMENTS [J].
ANDERSON, RGW ;
PATHAK, RK .
CELL, 1985, 40 (03) :635-643
[3]  
APPS DK, 1982, FED PROC, V41, P2775
[4]  
BARR R, 1984, J BIOL CHEM, V259, P4064
[5]   MEMBRANE-POTENTIAL RESPONSES FOLLOWING GRAVISTIMULATION IN ROOTS OF LEPIDIUM-SATIVUM L [J].
BEHRENS, HM ;
GRADMANN, D ;
SIEVERS, A .
PLANTA, 1985, 163 (04) :463-472
[6]  
BLEEKEMOLEN JE, 1988, EUR J CELL BIOL, V47, P366
[7]  
BOSS WF, 1984, EUR J CELL BIOL, V34, P1
[8]   CONSTITUTIVE AND REGULATED SECRETION OF PROTEINS [J].
BURGESS, TL ;
KELLY, RB .
ANNUAL REVIEW OF CELL BIOLOGY, 1987, 3 :243-293
[9]   BIOSYNTHESIS OF THE FUCOSE-CONTAINING XYLOGLUCAN NONASACCHARIDE BY PEA MICROSOMAL-MEMBRANES [J].
CAMIRAND, A ;
MACLACHLAN, G .
PLANT PHYSIOLOGY, 1986, 82 (02) :379-383
[10]   FUCOSYLATION OF XYLOGLUCAN - LOCALIZATION OF THE TRANSFERASE IN DICTYOSOMES OF PEA STEM-CELLS [J].
CAMIRAND, A ;
BRUMMELL, D ;
MACLACHLAN, G .
PLANT PHYSIOLOGY, 1987, 84 (03) :753-756