INVARIANTS FOR 3-MANIFOLDS FROM THE COMBINATORICS OF THE JONES POLYNOMIAL

被引:48
作者
LICKORISH, WBR
机构
[1] University of Cambridge, Cambridge, CB2 1SB, 16, Mill Lane
关键词
D O I
10.2140/pjm.1991.149.337
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The bracket polynomial of Kauffman first gave an exceedingly simple definition of the Jones polynomial for links. Here it is used to give a short direct proof of the existence of a few of Witten's 3-manifold invariants.
引用
收藏
页码:337 / 347
页数:11
相关论文
共 9 条
[1]   KIRBY CALCULUS OF LINKS [J].
FENN, R ;
ROURKE, C .
TOPOLOGY, 1979, 18 (01) :1-15
[2]  
KAUFFMAN LH, 1987, TOPOLOGY, V26, P395
[3]   CALCULUS FOR FRAMED LINKS IN S3 [J].
KIRBY, R .
INVENTIONES MATHEMATICAE, 1978, 45 (01) :35-56
[4]  
KIRBY RC, IN PRESS EVALUATIONS
[5]   POLYNOMIALS FOR LINKS [J].
LICKORISH, WBR .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1988, 20 :558-588
[6]   A REPRESENTATION OF ORIENTABLE COMBINATORIAL 3-MANIFOLDS [J].
LICKORISH, WBR .
ANNALS OF MATHEMATICS, 1962, 76 (03) :531-&
[7]   LINEAR SKEIN THEORY AND LINK POLYNOMIALS [J].
LICKORISH, WBR .
TOPOLOGY AND ITS APPLICATIONS, 1987, 27 (03) :265-274
[8]  
RESHETIKHIN NY, IN PRESS INVENT MATH
[9]   QUANTUM-FIELD THEORY AND THE JONES POLYNOMIAL [J].
WITTEN, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 121 (03) :351-399