3RD ORDER ACCURATE DISCONTINUOUS FINITE-ELEMENT METHOD FOR THE ONE-DIMENSIONAL STEFAN PROBLEM

被引:26
作者
BONNEROT, R
JAMET, P
机构
[1] Commissariat a l'Énergie Atomique, Centre E'Études de Limeil, Service de Mathématiques Appliquees, 94190 Villeneuve-Saint-Georges
关键词
D O I
10.1016/0021-9991(79)90127-X
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A third order accurate method is proposed for the numerical solution of the one-dimensional Stefan problem. It provides approximations which are continuous with respect to the space-variable x, but which admit discontinuities with respect to the time variable t at each time step. The discretization is based on biquadratic finite elements in the plane (x, t). This method is specially appropriate for the computation of solutions which admit singularities at the initial time or on the boundary. Numerical experiments are described. © 1979.
引用
收藏
页码:145 / 167
页数:23
相关论文
共 16 条
[1]   NUMERICAL COMPUTATION OF FREE BOUNDARY FOR 2-DIMENSIONAL STEFAN PROBLEM BY SPACE-TIME FINITE-ELEMENTS [J].
BONNEROT, R ;
JAMET, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1977, 25 (02) :163-181
[2]  
Bonnerot R., 1974, International Journal for Numerical Methods in Engineering, V8, P811, DOI 10.1002/nme.1620080410
[3]  
Ciarlet P.G., 2002, FINITE ELEMENT METHO
[4]  
Crank J., 1972, IMA J APPL MATH, V10, P296, DOI [10.1093/imamat/10.3.296, DOI 10.1093/IMAMAT/10.3.296]
[5]   ON THE NUMERICAL INTEGRATION OF A PARABOLIC DIFFERENTIAL EQUATION SUBJECT TO A MOVING BOUNDARY CONDITION [J].
DOUGLAS, J ;
GALLIE, TM .
DUKE MATHEMATICAL JOURNAL, 1955, 22 (04) :557-571
[6]  
GRAVELEAU J, 1972, REPORT COM ENERG ATO
[8]  
JAMET P, 1977, METHODES NUMERIQUES
[9]   NUMERICAL METHOD FOR 2-PHASE STEFAN PROBLEMS [J].
MEYER, GH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1971, 8 (03) :555-&