LATTICE-VALUED RANDOM-WALKS WITH MARKOV-CHAIN DEPENDENT STEPS

被引:5
作者
DALEY, DJ
机构
[1] Statistics Department (IAS), The Australian National University
关键词
D O I
10.1017/S0305004100000682
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The probability of ever returning to the origin and the mean square displacement after n steps are studied for some lattice-valued random walks, whose successive steps constitute a Markov chain on a finite state space with transition probabilities of a simple kind, and such that the returns to the origin form a regenerative phenomenon. The case of walks on a diamond lattice with no immediate reversals is included: this example is relevant as a polymer chain building model. The numerical evaluation of the return probabilities of some three-dimensional walks is discussed and examples given. © 1979, Cambridge Philosophical Society. All rights reserved.
引用
收藏
页码:115 / 126
页数:12
相关论文
共 16 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS F
[2]  
[Anonymous], 1964, PRINCIPLES RANDOM WA, DOI DOI 10.1007/978-1-4757-4229-9
[3]  
Barber M. N., 1970, RANDOM RESTRICTED WA
[4]  
DALEY DJ, UNPUBLISHED
[5]  
Domb C., 1958, P CAMBRIDGE PHILOS S, V54, P48
[6]  
Feller W., 1966, INTRO PROBABILITY TH, V2
[7]  
Flory P.J., 1989, STAT MECH CHAIN MOL
[8]  
Gillis J., 1955, MATH PROC CAMBRIDGE, V51, P639
[9]   EXTENDED WATSON INTEGRALS FOR CUBIC LATTICES [J].
GLASSER, ML ;
ZUCKER, IJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1977, 74 (05) :1800-1801
[10]   GRAPH-LIKE STATE OF MATTER .9. STATISTICAL THERMODYNAMICS OF DILUTE POLYMER-SOLUTIONS [J].
GORDON, M ;
TORKINGTON, JA ;
ROSSMURPHY, SB .
MACROMOLECULES, 1977, 10 (05) :1090-1100