GLOBAL CONVERGENCE OF A SEMI-INFINITE OPTIMIZATION METHOD

被引:4
作者
BELL, BM
机构
[1] Applied Physics Laboratory, College of Ocean and Fishery Sciences, University of Washington, Seattle, 98105, WA
关键词
D O I
10.1007/BF01445158
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new algorithm for minimizing locally Lipschitz functions using approximate function values is presented. It yields a method for minimizing semi-infinite exact penalty functions that parallels the trust-region methods used in composite nondifferentiable optimization. A finite method for approximating a semi-infinite exact penalty function is developed. A uniform implicit function theorem is established during this development. An implementation and test results for the approximate penalty function are included. © 1990 Springer-Verlag New York Inc.
引用
收藏
页码:69 / 88
页数:20
相关论文
共 21 条
[1]  
BELL BM, 1984, THESIS U WASHINGTON
[2]   NEW APPROACH TO LAGRANGE MULTIPLIERS. [J].
Clarke, Frank H. .
Mathematics of Operations Research, 1976, 1 (02) :165-174
[3]   AN EXACT PENALTY-FUNCTION FOR SEMI-INFINITE PROGRAMMING [J].
CONN, AR ;
GOULD, NIM .
MATHEMATICAL PROGRAMMING, 1987, 37 (01) :19-40
[4]   A PROJECTED LAGRANGIAN ALGORITHM FOR SEMI-INFINITE PROGRAMMING [J].
COOPE, ID ;
WATSON, GA .
MATHEMATICAL PROGRAMMING, 1985, 32 (03) :337-356
[5]  
Fletcher R., 1981, PRACTICAL METHODS OP, V2
[6]  
FURUKAWA N, 1983, APPL MATH OPT, V9, P337
[7]   IMPROVED ALGORITHM FOR OPTIMIZATION PROBLEMS WITH FUNCTIONAL INEQUALITY CONSTRAINTS [J].
GONZAGA, C ;
POLAK, E ;
TRAHAN, R .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1980, 25 (01) :49-54
[8]  
Madsen K., 1986, THESIS TU DENMARK
[9]   AN ALGORITHM FOR LEAST-SQUARES ESTIMATION OF NONLINEAR PARAMETERS [J].
MARQUARDT, DW .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1963, 11 (02) :431-441
[10]   OUTER APPROXIMATIONS ALGORITHM FOR COMPUTER-AIDED-DESIGN PROBLEMS [J].
MAYNE, DQ ;
POLAK, E ;
TRAHAN, R .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1979, 28 (03) :331-352