ON THE STABILITY BOUNDS OF SINGULARLY PERTURBED SYSTEMS

被引:77
作者
CHEN, BS [1 ]
LIN, CL [1 ]
机构
[1] NATL CHENG KUNG UNIV,INST AERONAUT & ASTRONAUT,TAINAN,TAIWAN
关键词
D O I
10.1109/9.59817
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This note considers the stability bound problem of linear time-invariant singularly perturbed systems. A set of new stability conditions based on the frequency domain representation is derived. These stability criteria can be easily verified by computing certain singular values within finite frequency intervals. Illustrative examples show that the proposed criteria actually induce a less conservative ∊-bound than the existing criteria, and for certain cases an infinite ∊-bound may be obtained. © 1990 IEEE
引用
收藏
页码:1265 / 1270
页数:6
相关论文
共 11 条
[1]  
[Anonymous], 1977, SYSTEM IDENTIFICATIO
[3]   SCHUR PARAMETRIZATION OF POSITIVE DEFINITE BLOCK-TOEPLITZ SYSTEMS [J].
DELSARTE, P ;
GENIN, Y ;
KAMP, Y .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1979, 36 (01) :34-46
[4]  
Desoer CA., 1975, FEEDBACK SYSTEMS INP
[5]   CHARACTERIZATION AND COMPUTATION FOR THE BOUND EPSILON-STAR IN LINEAR TIME-INVARIANT SINGULARLY PERTURBED SYSTEMS [J].
FENG, W .
SYSTEMS & CONTROL LETTERS, 1988, 11 (03) :195-202
[6]  
Klimushchev A.I., 1962, PMM-J APPL MATH MEC, V25, P1011
[7]  
Kokotovic P., 1999, SINGULAR PERTURBATIO
[8]   ROBUSTNESS WITH SIMULTANEOUS POLE AND ZERO MOVEMENT ACROSS THE J-OMEGA-AXIS [J].
POSTLETHWAITE, I ;
FOO, YK .
AUTOMATICA, 1985, 21 (04) :433-443
[9]   SINGULAR PERTURBATIONS AND TIME-SCALE METHODS IN CONTROL-THEORY - SURVEY 1976-1983 [J].
SAKSENA, VR ;
OREILLY, J ;
KOKOTOVIC, PV .
AUTOMATICA, 1984, 20 (03) :273-293
[10]   ROBUST STABILITY OF SYSTEMS WITH APPLICATION TO SINGULAR PERTURBATIONS [J].
SANDELL, NR .
AUTOMATICA, 1979, 15 (04) :467-470