CURVATURE CORRECTIONS TO THE CAPILLARY WAVE HAMILTONIAN

被引:23
作者
NAPIORKOWSKI, M [1 ]
DIETRICH, S [1 ]
机构
[1] BERG UNIV GESAMTHSCH WUPPERTAL, FACHBEREICH PHYS, D-42097 WUPPERTAL, GERMANY
来源
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER | 1995年 / 97卷 / 04期
关键词
D O I
10.1007/BF01322432
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The fluctuations of interfaces between fluid phases are governed by an effective nonlocal interface Hamiltonian whose gradient expansion leads to the Helfrich Hamiltonian. Based on density functional theory we discuss the validity of this expansion and study the expansion coefficients multiplying the corresponding curvature terms.
引用
收藏
页码:511 / 513
页数:3
相关论文
共 24 条
[1]  
[Anonymous], 1982, MOL THEORY CAPILLARI
[2]   VAN-DER-WAALS THEORY OF CURVED SURFACES [J].
BLOKHUIS, EM ;
BEDEAUX, D .
MOLECULAR PHYSICS, 1993, 80 (04) :705-720
[3]   DERIVATION OF MICROSCOPIC EXPRESSIONS FOR THE RIGIDITY CONSTANTS OF A SIMPLE LIQUID VAPOR INTERFACE [J].
BLOKHUIS, EM ;
BEDEAUX, D .
PHYSICA A, 1992, 184 (1-2) :42-70
[4]   MICROSCOPIC EXPRESSIONS FOR THE RIGIDITY CONSTANTS OF A SIMPLE LIQUID VAPOR INTERFACE [J].
BLOKHUIS, EM ;
BEDEAUX, D .
JOURNAL OF CHEMICAL PHYSICS, 1991, 95 (09) :6986-6988
[5]  
BLOKHUIS EM, 1994, HETEROGENEOUS CHEM R, V55
[6]  
DAVID F, 1989, STATISTICAL MECHANIC
[7]   INTERFACE IN A GINSBURG-LANDAU-WILSON MODEL - DERIVATION OF THE DRUMHEAD MODEL IN THE LOW-TEMPERATURE LIMIT [J].
DIEHL, HW ;
KROLL, DM ;
WAGNER, H .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1980, 36 (04) :329-333
[8]   MICROSCOPIC DERIVATION OF THE EFFECTIVE INTERFACE HAMILTONIAN FOR LIQUID VAPOR INTERFACES [J].
DIETRICH, S ;
NAPIORKOWSKI, M .
PHYSICA A, 1991, 177 (1-3) :437-442
[9]   NATURE OF THE LIQUID-VAPOR INTERFACE AND OTHER TOPICS IN THE STATISTICAL-MECHANICS OF NONUNIFORM, CLASSICAL FLUIDS [J].
EVANS, R .
ADVANCES IN PHYSICS, 1979, 28 (02) :143-200
[10]   CURVATURE CORRECTIONS TO THE SURFACE-TENSION OF FLUID DROPS - LANDAU THEORY AND A SCALING HYPOTHESIS [J].
FISHER, MPA ;
WORTIS, M .
PHYSICAL REVIEW B, 1984, 29 (11) :6252-6260